
1 Entropy

Before we define entropy, let’s review briefly what we’ve learned from our
considerations of the microstates and macrostates of large systems.

• For a single isolated system, we want to count the number of mi-
crostates of the whole system for any given macrostate, which we have
generally characterized by the fixed energy. We generally assume all
microstates are equally probable.

• We now know how to do the microstate counting for all three of our
toy systems: the ideal gas, the Einstein crystal, and the two-state
paramagnet.

• For two systems in weak thermal contact (but otherwise isolated), the
(overwhelmingly) most probable division of energy, which we have
taken to characterize all the possible macrostates, is the one with
the greatest number of microstates of the combined system. So, if we
want to predict the mean division of energy in equilibrium, which is an
observable macroscopic quantity, we have to find the macrostate that
maximizes the number of microstates, or equivalently, the macrostate
with the greatest multiplicity.

• The problem of predicting the equilibrium properties of two systems
in weak contact is prototypical in thermal physics, so understanding
first how to discover the equilibrium macrostate is critical.

In thermodynamics one learns that the entropy is a quantity that is max-
imized in equilibrium. By that it is meant that if one takes a constrained
system, or equivalently two separated systems, and removes the constraint,
e.g., whatever separates the originally separated systems, the equilibrium
state that results is the state of the unconstrained, or combined, system
that has the greatest entropy. This sounds very much like what we have
concluded regarding the multiplicity of the macrostate with the greatest
likelihood. Indeed, it is tempting to say that multiplicity and entropy are
one and the same. Conceptually, that is the case, but in order to obtain
a quantitative mapping between multiplicity and thermodynamic entropy,
it is necessary to take the natural logarithm and multiply by Boltzmann’s
constant:

S = k lnΩ . (1)

The proof of that requires some experience with the concept of entropy
in thermodynamics, which we haven’t yet acquired, so we won’t do that
now. The reason for the factor of Boltzmann’s constant is simply to endow
the entropy with the same dimensions it has in thermodynamics, which, in
turn, arise from the way temperature is defined.

It’s interesting to note that Boltzmann was so proud of his discovery of
the statistical formula for entropy, that he requested that it be engraved on
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his tombstone:

1.1 But what is entropy, really?

In a sense, the definition, and it really is just a definition, given in (1) is all
we need, since it gives us a way to calculate S, and it exposes its underlying
probabilistic meaning. Unfortunately, it’s difficult to express its meaning
in succinct “everyday” terms. How you explain it to your mother in a few
sentences? Nevertheless, it may be useful both to try to develop a deeper
understanding and to place the concept into the broader context that has
emerged since Boltzmann’s discovery.

First, let’s note that entropy is often described as a measure of uncer-
tainty, of disorder, or of diversity. Those descriptions make some sense in
the context we have established, since macrostates with a greater number
of corresponding microstates than other macrostates do leave one with less
certainty about exactly which microstate the system is in, and the corre-
sponding collection of microstates exhibits greater disorder and diversity.

The uncertainty interpretation is readily made evident by the game of
20 questions. Suppose I say that I have chosen a number from 1 to 32, and
you are to try to discover that number by asking me a series of questions
to which I respond with either “yes” or “no.” What is the smallest number
of questions that is guaranteed to give you the number?

The probabilistic nature of entropy was made even clearer by the work of
Claude Shannon, who derived an expression for the entropy of an arbitrary
probability distribution in the context of his studies on communication
theory at Bell Labs. Shannon’s expression is more general than the one
presented in (1), but it reduces to that in the case of a uniform probability
distribution, and it coincides with a more general definition of entropy that
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is also used in statistical mechanics:

S = −k
∑

i

pi ln pi , (2)

where i indexes some event that occurs with probability pi, and k is an
arbitrary constant, Boltzmann’s constant in the context of statistical me-
chanics. In this form, we see that entropy is really a property of probability
distributions.

To see that it maps nicely onto what we have done so far, think of any
given macrostate as a specification of the probability distribution of the
microstates belonging to it. It’s a rather trivial probability distribution,
since we’ve assumed the microstates to be equally likely, but it assigns
equal probabilities to the allowed microstates and zero probability to each
of the other microstates that are incompatible with that macrostate.

Exercise: show that when all probabilities are equal, Shannon’s defini-
tion (2) reduces to Boltzmann’s (1).

1.1.1 Shannon’s theorem

It’s interesting to take a look at Shannon’s theorem for the insights it offers
into the degree to which the choice of the definition of entropy is really a
natural one. The hypotheses are remarkably minimal.

The context is this. We have some collection of n possible “events”
(states of a system, measured values of a discrete variable, or whatever), and
there is assigned to those events a corresponding collection of probabilities
pi. We’ll suppose the set of possibilities is exhaustive—there are no others
in the context of interest. And we’ll suppose the events to be mutually
exclusive—if the system is in state 3, it is surely not in state 12.

It’s useful to imagine that the probabilities are intended to represent our
state of knowledge of the probable outcomes of measurements in a way that
takes into account information we already know but is otherwise as unbiased
as possible. That is, the goal is to choose a probability distribution that is
as uncertain as possible within the constraints of prior knowledge, which is
assumed to be inadequate to determine outcomes with certainty. In that
light, having a measure of the uncertainty of a probability distribution is
seen to be of great utility.

Shannon’s theorem then demonstrates that the form of an entropy (un-
certainty) function that satisfies certain desirable requirements is given by
(2) and is unique, apart from the choice of the constant k, which is usually
chosen to be 1 in probability theory and Boltzmann’s constant in statistical
mechanics.

Let’s denote the entropy function by H(p1, . . . , pn).

Theorem. Suppose

1. H is a continuous function of the pi. This simply assures that small
changes in the probabilities don’t result in big jumps in H.
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2. If all of the pi are equal, then

A(n) = H

(
1
n

, . . . ,
1
n

)
(3)

is a monotonically increasing function of n. This enforces the intu-
itive expectation that a larger collection of equally probably events has
more uncertainty than a smaller one. That is just the concept we have
been using in our treatment of macrostate multiplicities.

3. The value of H is independent of the grouping of the events.

Then

H(p1, . . . , pn) = −k

n∑
i=1

pi ln pi . (4)

The last part of the hypothesis requires a bit of elaboration. The idea
is that we can group the events into composite events in a variety of ways,
obtaining the entropy in terms of the hierarchy of probability distributions
for the groups and for the individual events within the groups. A simple
pictorial example is this:

This is what is done in the 20 questions game: the first question groups
the possible events, the possible values of the chosen number, into two
groups with about equal probabilities. Once the group has been determined,
one must ask further questions, breaking down each group in steps to get
to the answer. At each step, there is an associated probability distribution
and an entropy for the groups chosen at that step. There are many ways
of choosing the groupings, and third hypothesis requires the total entropy
to be the same, regardless of the way the groups are chosen.

Another example is the determination of the identity of a card drawn
at random from a deck of playing cards. One could calculate the entropy of
the overall distribution, or one could calculate that of the distribution of the
four suits, with subsequent determination of the entropy of the probability
distribution for cards within each suit.

Stated generally, we might group the first j events into a subset whose
probability is

w1 = p1 + . . . + pj , (5)

and make similar groupings of the other events, a total of r altogether. Then
there is an entropy function associated with the probability distribution
defined by the wi, and for each of the groups, there is another entropy that
must be added to that of the groups. But the groups don’t necessarily
occur with equal probability, so the entropies of the groups must be added
with weights equal to the probabilities of the groups:

H(p1, . . . , pn) = H(w1, . . . , wr) + w1H(p1|w1, . . . , pj |w1)
+ w2H(pj+1|w2, . . . , pj+k|w2) + . . . ,

(6)
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where pi|wl is the probabality of event i given that some event in group wl

has occurred.
The significance of that requirement is that the knowledge we gain ul-

timately from either inquiry on the individual events one-by-one or from a
hierarchical inquiry on groupings of them, followed by inquiry within the
groups is the same. The 20 questions game should make this clear: you’re
welcome to ask in succession whether the chosen number is 1, 2, and so on,
or to ask whether the number is in either of two groups, and so on. No
matter how you ask the questions, you get to the same state of knowledge
in the end. Therefore, the uncertainty at the beginning must have been the
same, and the third hypothesis forces the entropy function to reflect that.

Proof. I won’t present a complete proof, but this should make the conclu-
sion pleasingly plausible. This proof is closely similar to one favored by
E. T. Jaynes, rather than Shannon’s own proof.

The first hypothesis, continuity, allows us to discretize the calculation.
That is, we can work with probabilities that are rational numbers:

pi =
ni∑n
i=1 ni

. (7)

Once the set {ni} has been chosen, we can regard that choice, which
gives the probabilities of the events i as a grouping of some set of “subevents”
that are all equally likely, with their total number being

∑
ni. Within each

group, the entropy function is that of equally probably events, A(ni). Thus,
the overall entropy for the complete collection of subevents is, by (6),

A
(∑

ni

)
= H(p1, . . . , pn) +

n∑
i=1

piA(ni) . (8)

As a specific example, we might choose n1 = 3, n2 = 4, and n3 = 2, for
which the entropy calculation would look like:

A(9) = H

(
3
9
,
4
9
,
2
9

)
+

3
9
A(3) +

4
9
A(4) +

2
9
A(2) . (9)

Now suppose all n of the ni are chosen to be the same value m, in which
case their sum is mn. The the entropy calculation simplifies to:

A(mn) = A(m) + A(n) . (10)

Here’s where we depart from rigor. We’ll imagine m and n to be continuous,
rather than discrete variables; let’s rename them x and y. Then we have

A(xy) = A(x) + A(y) . (11)

Now differentiate this separately with respect to x and y to get

y
dA(xy)
d(xy)

=
dA(x)

dx
and x

dA(xy)
d(xy)

=
dA(y)

dy
. (12)
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Solve both of those for dA(xy)/d(xy) and equate the results to get

x
dA(x)

dx
= y

dA(y)
dy

. (13)

Since this holds for arbitrary values of the independent variables x and y,
both sides of this equation must equal the same constant, which we’ll call
k:

dA(x)
dx

=
k

x
. (14)

Integration of this gives

A(x) = k lnx + C , (15)

where C is an integration constant. Substituting this back into (10), with
x and y replacing m and n, we get

k ln(xy) + C = k lnx + C + k ln y + C , (16)

which requires that C = 0. Thus, the entropy function for equal probabili-
ties is

A(n) = k lnn . (17)

This is just the Boltzmann form.
To complete the proof, we just substitute this result back into the gen-

eral form (8) to get

k ln

(
n∑

i=1

ni

)
= H(p1, . . . , pn) + k

n∑
i=1

pi lnni , (18)

which leads to

H(p1, . . . , pn) = k

[
ln

(
n∑

i=1

ni

)
−

n∑
i=1

pi lnni

]

= −k

n∑
i=1

pi ln pi .

(19)
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