Phase-matching in cascaded third-order frequency mixing

Charles G. Durfee

Department of Physics Colorado School of Mines Golden, CO 80401 cdurfee@mines.edu

Lino Misoguti, Sterling Backus, Margaret M. Murnane and Henry C. Kapteyn Department of Physics/JILA University of Colorado Boulder, CO 80303

Funding: DOE

Outline

Department of Physics

Colorado School of Mines

- Applications of ultrafast shortwavelength pulses
- Background: alternatives for frequency conversion
- Techniques for hollow-core waveguide phase matching
- Phase-matching of cascaded mixing
 - analytic phase-matching conditions
 - simulations
 - experimental results
- Scaling to greater conversion and higher orders

Applications of ultrafast short-wavelength pulses

Department of Physics

Colorado School of Mines

- Chemical reactions
 - > time resolution
 - > intermediate states
 - > coherent control

• Materials

- > micromachining/nanofabrication
- > lithography
- > synchrotron applications

• Physics

- > atomic stabilization
- > high density plasma interactions
- > x-ray nonlinear optics

• Biophysics

- > cross-linking DNA/proteins
- > water-window holography

Frequency conversion with nonlinear crystals

Department of Physics

Limitations of nonlinear crystals:

- Transparency
- Phase-matching range
- Phase-matching bandwidth/ group velocity walkoff
- Periodically-poled materials
- Crystal damage for high-power pulses

- ~ 150-200 nm
- ~ 190 nm
- ~ 150 fs @266nm
- ~ 350 nm

Colorado School of Mines

Use of gases circumvents some of these problems:

- High transparency:
- Low dispersion preserves pulse width
- No damage limitations

Focused beam geometry: Guoy phase shift

Colorado School of Mines

He: >50 nm, Ar: >105nm

Hollow waveguides for high-intensity guiding

Department of Physics

Colorado School of Mines

Low conversion efficiency in gases:

- Improve *intensity* **x** *density* **x** *length*
- Phase-matching

Capillary waveguides:

• guiding is lossy but allows high-intensity interactions

Hollow waveguide propagation phase

Department of Physics

Colorado School of Mines

The waveguide modes have flat wavefronts -> z-independent contribution to phase.

$$k = \frac{2\pi}{\lambda} \left[1 + P\delta(\lambda) - \frac{1}{2} \left(\frac{u_{nm}\lambda}{2\pi a} \right)^2 \right]$$

vacuum gas

waveguide

Waveguide phase from countering diffraction: strong effect on long wavelength

Phase match ($\Delta k = 0$) by varying gas pressure to balance gas and waveguide dispersion.

Experimental setup

Department of Physics

Colorado School of Mines

Capillary lengths vary or can be segmented

Techniques for waveguide phase matching

Department of Physics

Colorado School of Mines

Modal phase matching for direct harmonic generation

(Durfee et al, Opt. Lett. 22 p. 1565 (1997))

$$\Delta k = \frac{2\pi P}{\lambda_3} \left[\delta(\lambda_3) - \delta(\lambda_1) \right] - \frac{1}{4\pi a^2} \left(u_{13}^2 \lambda_3 - 3u_{11}^2 \lambda_1 \right)$$
$$\Delta k_{material} > 0 \qquad \Delta k_{mode} > 0$$

Efficiency is low ($\sim 0.2\%$) because of poor mode overlap

Techniques for waveguide phase matching

Department of Physics

Colorado School of Mines

. 11

Frequency mixing allows all beams to be in lowest mode

$$\omega_{3} = 2\omega_{2} - \omega_{1}$$

$$\omega_{2}$$

$$\omega_{2}$$

$$\omega_{3}$$

$$\omega_{1} = idler$$

$$\omega_{2} = pump$$

$$\omega_{3} = signal$$

$$\Delta k = 2\pi P \left[\frac{\delta(\lambda_{3})}{\lambda_{3}} - \frac{2\delta(\lambda_{2})}{\lambda_{2}} + \frac{\delta(\lambda_{1})}{\lambda_{1}} \right] - \frac{u_{11}^{2}}{4\pi a^{2}} (\lambda_{3} - 2\lambda_{2} + \lambda_{1})$$

Phase-matching: Tune pressure to balance gas and modal terms

Waveguide phase matching: UV results

Department of Physics

Colorado School of Mines

~ 40% conversion from blue pump near-Gaussian output mode < 7 fs walkoff Tunable throughout the deep-UV by using OPA output as idler

Durfee et al, Opt. Lett. 22 p. 1565 (1997)

Which gas? *High nonlinearity=high dispersion=lower pressure*. Doesn't really matter.

Waveguide phase matching: high harmonics

Department of Physics

Colorado School of Mines

- * Gas, waveguide dispersion balance.
- n < 1 @ 25 nm -> Simple HHG can be phase-matched.
- Absorption of signal is now an issue

Phase-matched HHG results

Department of Physics

Colorado School of Mines

• Output enhanced by 100-1000x

detector

- Yield limited by absorption
- optimum pressure varies with gas
- no defocusing, little absorption of fundamental

Rundquist *et al*, Science **280**, 1412 (1998) Durfee *et al*, PRL **83**, 2187 (1999)

Short UV pulse generation/compression

Department of Physics

Colorado School of Mines

Cascaded processes

Department of Physics

High conversion to third harmonic drives cascaded processes.

Which paths are most important?

- phase-matching
- effective order of nonlinearity

Cascaded generation: experimental results

Colorado School of Mines

Cascaded conversion is relatively efficient, shows distinct signature of phase matching.

Approaches to calculations

Department of Physics

1874 DORADO

Colorado School of Mines

Two approaches to calculations:

- 1. Analytic small-signal analysis
- phase-matching conditions
- estimate relative efficiency of different processes
- 2. Numerical modeling
- saturation
- walkoff
- phase-modulation effects
- losses
- higher-order modes

Small-signal analysis: phase-matching

Department of Physics

1874 CORADO

Colorado School of Mines

To derive phase-matching conditions: use non-depleted growth of third harmonic as source for cascading

Example:

$$\frac{dE_4}{dz} = ik_4 \chi^{(3)} E_2 E_3(z) E_1^* \exp[i\Delta k_4 z]$$

Where

$$E_{3}(z) = \frac{-2k_{3}\chi^{(3)}E_{2}^{2}E_{1}^{*}\exp[i\Delta k_{3}z/2]\sin[\Delta k_{3}z/2]}{\Delta k_{3}}$$

 E_4 grows under several different phase matching conditions...

Cascaded phase-matching mechanisms

Gain-assisted PM: Increase in $E_3(z)$ gives buildup in E_4 in spite of phase mismatch

Cascaded QPM: P_{NL} is modulated by $E_3(z) @ 1/\Delta k_4$

Department of Physics

Colorado School of Mines

For sufficiently long interaction length, cascaded low-order processes can dominate direct high-order.

Effective nonlinearity for cascading:

$$\chi_{eff}^{(5)} \approx \frac{2\pi k_3 \left(\chi^{(3)}\right)^2}{\Delta k_3}$$

<u>Residual phase mismatch (Δk_3) is *small* in gases: Example: for $\omega_4 = \omega_2 + \omega_3 - \omega_1$ and $\Delta k_4 + \Delta k_3 = 0$ $I_{direct}/I_{cascaded} \sim 10^{-5}$ </u>

Nonperturbative effects:

- χ does not drop off as steeply: plateau in high orders >7

Propagation calculations

Department of Physics

Colorado School of Mines

Propagation code calculates saturated conversion

Input fields:

•energy, pulse duration, chirp, relative delay

Pressure loop

Propagation step loop: split-step + Runge-Kutta

Time domain: •spm, xpm

•nonlinear mixing

Frequency domain: •dispersion, losses

Output processing: •energy calculation •post-compression

Major assumptions:

- discrete-mode propagation
- five harmonic fields
- no bending losses
- no ionization

Code results: third harmonic

Department of Physics

1874 OLORADO

Colorado School of Mines

Low pressure: peak broad, shifted high

Code results: Fourth harmonic

Colorado School of Mines

Code results: fifth harmonic

Department of Physics

Colorado School of Mines

Gain-assisted peak is strongest

Two-stage generation

Department of Physics

Colorado School of Mines

Improve cascading efficiency by using two stages:

- 1. Generate w3: $\Delta k_3 = 0$
- 2. Generate w4: $\Delta k_4 = 0$ (not CQPM)

Scaling to high conversion

Department of Physics

Colorado School of Mines

High intensity blue (400nm) drives conversion to 4ω and 5ω - should approach ~20%, 2% conversion

At 150µJ (400nm), 10µJ (800nm), optimum 5ω shifts to peak 4w output (gain-assisted).

High-order cascading

Department of Physics

1874 COLORADO

Colorado School of Mines

Harmonic yield

3 cm capillary 150μJ @ω 90 μJ @2ω

Mixing ω and 2ω gives significant enhancement of HHG *inside absorption window*

Conclusions and future work

Department of Physics

LIBTA DO

Colorado School of Mines

<u>Summary:</u>

- efficient upconversion to deep-UV, VUV, and XUV
- three types of phase-matching:
 - standard
 - cascaded quasi-phase-matching
 - gain-assisted phase-matching

<u>Future work:</u>

- improve efficiency of cascading
- extend to higher orders
- scale to higher pulse energies
- develop high power fs sources at 400nm and UV wavelengths