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Outline
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• Applications of ultrafast shortwavelength pulses

• Background: alternatives for frequency conversion 

• Techniques for hollow-core waveguide phase matching

• Phase-matching of cascaded mixing

• analytic phase-matching conditions

• simulations

• experimental results

• Scaling to greater conversion and higher orders



Applications of ultrafast short-wavelength pulses
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• Chemical reactions

> time resolution

> intermediate states

> coherent control

• Physics 

> atomic stabilization

> high density plasma interactions

> x-ray nonlinear optics

• Materials

> micromachining/nanofabrication

> lithography

> synchrotron applications

• Biophysics

> cross-linking DNA/proteins

> water-window holography



Frequency conversion with nonlinear crystals
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• Transparency ~ 150-200 nm

• Phase-matching range ~ 190 nm

• Phase-matching bandwidth/

      group velocity walkoff ~ 150 fs @266nm

• Periodically-poled materials ~ 350 nm

• Crystal damage for high-power pulses

Limitations of nonlinear crystals:



Frequency conversion in gases
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Use of gases circumvents some of these problems:

• High transparency: He: >50 nm, Ar: >105nm

• Low dispersion preserves pulse width 

• No damage limitations

Focused beam geometry: Guoy phase shift

• direct third-harmonic
  (1 μJ, 0.1%, 12 fs)

• High-order harmonic generation

uvlaser beam 
plasma

xrayslaser beam 

Gas jet



Hollow waveguides for high-intensity guiding
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Low conversion efficiency in gases: 

• Improve     intensity x density x length

• Phase-matching

Capillary waveguides: 
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• guiding is lossy but allows high-intensity interactions



Phase match ( k = 0) by varying gas pressure to balance gas and waveguide dispersion.

The waveguide modes have flat wavefronts          z-independent contribution to phase.

waveguidegasvacuum

UV, X-rays

IR input

Hollow waveguide propagation phase
 Department of Physics                                                                                                         Colorado School of Mines
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Waveguide phase from countering diffraction: strong effect on long wavelength



Experimental setup
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Capillary lengths vary or can be segmented



Techniques for waveguide phase matching
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Modal phase matching for direct harmonic generation
      (Durfee et al, Opt. Lett.  22 p. 1565 (1997))
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Efficiency is low (~0.2%) because of poor mode overlap

Experimental

data: Argon



Techniques for waveguide phase matching
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Frequency mixing allows all beams to be in lowest mode
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Phase-matching: Tune pressure to balance gas and modal terms

1= idler

2= pump

3=

signal
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Ar

267 nm output

~ 40% conversion from blue pump Tunable throughout the deep-UV

by using OPA output as idlernear-Gaussian output mode

< 7 fs walkoff       Durfee et al, Opt. Lett. 22 p. 1565 (1997)  

signal  = 2 x pump - idler

Waveguide phase matching: UV results
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Which gas? High nonlinearity=high dispersion=lower pressure.

Doesn’t really matter.
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waveguide
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high-order
harmonic 
(~25 nm)

n( )

Gas, waveguide dispersion balance.

n < 1 @ 25 nm  -> Simple HHG can be phase-matched.

Waveguide phase matching: high harmonics
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Absorption of signal is now an issue 



Phase-matched HHG results
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• Output enhanced by 100-1000x

• Yield limited by absorption

• optimum pressure varies with gas

• no defocusing, little absorption of

    fundamental

Rundquist et al, Science 280, 1412 (1998)

Durfee et al, PRL 83, 2187 (1999) 

Yield of 29th harmonic vs pressure



Short UV pulse generation/compression
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Post-compression with

 gratings yields

 ~ 8 fs, μJ pulses
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Cascaded processes
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High conversion to third harmonic drives cascaded processes.

Many processes are

possible:

Which paths are most important?

• phase-matching

• effective order of nonlinearity
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Cascaded generation: experimental results
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Cascaded conversion is relatively efficient, shows distinct

signature of phase matching.



Approaches to calculations
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Two approaches to calculations:

1. Analytic - small-signal analysis

- phase-matching conditions

- estimate relative efficiency of different processes

2. Numerical modeling

- saturation

- walkoff

- phase-modulation effects

- losses

- higher-order modes



Small-signal analysis: phase-matching
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To derive phase-matching conditions:

use non-depleted growth of third harmonic as source for cascading
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Cascaded phase-matching mechanisms
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Cascaded QPM:

 PNL is modulated by E3(z) @ 1/ k4

Gain-assisted PM:

Increase in E3(z) gives buildup in E4

in spite of phase mismatch



Cascaded vs. direct processes
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For sufficiently long interaction length, cascaded low-order 

processes can dominate direct high-order.
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Effective nonlinearity for cascading:

Residual phase mismatch ( k3) is small in gases:

Example: for 4= 2+ 3- 1 and k4+ k3=0

                    Idirect/Icascaded ~ 10-5

Nonperturbative effects:

 -  does not drop off as steeply: plateau in high orders >7



Propagation calculations
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Input fields:
•energy, pulse duration, chirp, relative delay

Pressure loop
Propagation step loop: split-step + Runge-Kutta

Time domain: 
•spm, xpm

•nonlinear mixing

Frequency domain: 
•dispersion, losses

Output processing:
•energy calculation

•post-compression

Propagation code calculates saturated conversion 

Major assumptions:
• discrete-mode propagation

• five harmonic fields

• no bending losses

• no ionization



Code results: third harmonic
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Code results: Fourth harmonic
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- cascaded QPM peak dominates

Measurement: 

- all three important



Code results: fifth harmonic
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Two-stage generation
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Improve cascading efficiency by using two stages:

1. Generate w3: k3=0 

2. Generate w4: k4=0 (not CQPM)
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Scaling to high conversion
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High intensity blue (400nm) drives conversion to 4  and 5

- should approach ~20%, 2% conversion

P (torr) P (torr)

length (cm) length (cm)

4 5

At 150μJ (400nm), 10μJ (800nm), optimum 5  shifts to 

peak 4w output (gain-assisted). 
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High-order cascading
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Mixing  and 2  gives significant enhancement of HHG 

inside absorption window

3 cm capillary

150μJ @

90 μJ @2



Conclusions and future work
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Summary:

• efficient upconversion to deep-UV, VUV, and XUV

• three types of phase-matching:

• standard

• cascaded quasi-phase-matching

• gain-assisted phase-matching

Future work:

• improve efficiency of cascading

• extend to higher orders

• scale to higher pulse energies

• develop high power fs sources at 400nm and UV wavelengths


