

Only get V along z axis. Now find $\vec{E}=-\vec{\nabla} V$

$$
=-\frac{\partial}{\partial x} v \hat{x}-\frac{\partial v}{\partial y} \hat{y}-\frac{\partial v}{\Sigma z} \hat{z}
$$

find V sully on z once

$$
V(z)=\frac{1}{4 \pi t} \int \frac{\alpha \vec{r}) d \tau^{\prime}}{r}
$$

expand $\frac{1}{M}$ in t

$$
x \quad V_{\text {dipob }}=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int \frac{r^{\prime} \cos \theta^{\prime}\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{}
$$

Write an integral expression for the dipole moment of the charge distribution $\rho=k(R-2 r) \sin \theta$

$$
\begin{aligned}
& \vec{E}=-\vec{V} V(x, y, z) \Rightarrow E_{z}=-\frac{\partial V}{\partial z} \quad E_{y}=-\frac{\partial v}{\partial y} \quad E_{x}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Have an expression for $V_{\text {diple }} \frac{E_{\text {dipole }} \text {. Do these }}{}$ expresions bapend on coord syptem chosen moment of inertio:

$$
I=\sum_{m \cdot i}^{m_{i}}
$$

$$
\begin{aligned}
\vec{p}_{\vec{\prime}}^{\prime} q_{i}^{s} \\
\vec{r}_{i}^{\prime} \\
\vec{p}_{s}^{\prime}+\vec{r}_{i}^{\prime}=\vec{r}_{i}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \sum_{i}^{\prime} q_{c}=0 \quad \text { (ns net change) then } \\
& \vec{P}_{s^{\prime}}=\vec{P}_{s}
\end{aligned}
$$

