1) HM problem 10-19. As part of section b of this problem, define the saturation field $E_{s a t}$ as the field strength at which the quantity $y=p_{0} E_{s a t} / k T=1$. For room temperature, calculate the saturation field strength in V / m and the corresponding saturation time-average intensity in $\mathrm{W} / \mathrm{m}^{2}$. As the incident intensity approaches $I_{\text {sat }}$, nonlinear effects become important.
2) HM problem $10-20$
3) HM problem $10-21$
4) Calculate the Fourier transform of the function $\cos ^{2}\left(\omega_{0} t\right)$. Sketch the result. If you have a delta function $\delta(\omega)$, show it as a spike with unit height, $a \delta(\omega)$ would be a spike with height a.
5) Use the convolution theorem and any other theorems to calculate the Fourier transform of the function $E(t)=E_{0} \sin ^{2} \omega_{0} t \exp \left(-a t^{2}\right)$. Show all your work: you shouldn't have to do any integrals; make use of the theorems and transform pairs. Sketch or plot the spectrum $\left(|E(\omega)|^{2}\right)$ in the limit that $\omega_{0} \gg a$.
