
Nonlinear Optics
Homework 3
due Wednesday, 21 Feb 2011

ü Problem 1: LiNiO3 pockels cell
The lithium niobate crystal has a different set of nonlinear coefficients in its electro-optic 
tensor from KDP, which was our example in class. It can work with a voltage that is 
transverse to the propagation direction of the beam. 

ü a. Set up the 3x6 electro-optic tensor for LiNi03 and calculate the three different index ellipsoid equations for Ex, Ey 
and Ez input polarization directions. The equivalent expression for KDP is equation 11.3.2.

ü b. For the general case, including all three field components, write out the full 3x3 h tensor that is implied by the first 
two terms of 11.2.11. Note that the field that goes into this tensor is the applied DC field. What you get is complicated, 
but normally, the field is applied in a specific x, y or z direction.  

ü c. The easiest orientation is where the DC field is applied in the X direction and the beam propagates in the Z direction.  
Write the new tensor for this situation. To do the full problem, we would find the new coordinate system that 
diagonalizes this tensor. It is simplest to work under the approximation that we can ignore the r42 term. When you set 
r42=0, the matrix is now very similar to what we had for KDP, and can be easily diagonalized. 

ü d. Following the reasoning in the book for KDP, find an expression for the half-wave voltage for the LiNiO3 crystal in 
this configuration. Explain why in this case the Pockels cell can be run at much lower voltage if constructed properly. 

ü For further information: the voltage can also be applied in the z direction, with the wave propagating in the x direction. 
This allows access to the high r33 coefficient. The trouble is that there is a lot of static birefringence, so a second, 
passive crystal oriented at 90o must also be put in-line to compensate the static birefringence of the first (kind of like 
we did for the zero-order waveplate).

ü Problem 2: Quasi phase matching
Boyd problem 2.9

ü Problem 3: 
Following the calculations done for second harmonic generation shown in the notebook 
mixing solutions.nb, numerically solve for the intensity vs. propagation length for sum 
frequency mixing. 
a) First start wih the nonlinear coupled equations 2.2.10, 2.2.12a, and 2.2.12b and redefine 
the fields scaled to the total intensity Itot = I1 + I2 + I3, along the lines of what is shown in 
2.7.13. It is easier to express the fields in terms of a single complex variable ai  instead of 
ui „i fi (which is the treatment in the book). Unlike the case for SHG, there will be some 
residual frequency dependence to the scaling factor. Choose your normalization factor to 
include the frequency w3, then the expressions to normalize A1 and A2 will have an extra 
factor of  w1 êw3 and w2 êw3, respectively. Note that eqn 2.7.19 should have the e0 c term in 
the numerator of the square root.

b) Construct the numerical solution using NDSolve[ ] as shown in my example. 
Find input conditions to generate plots like Figures 2.6.2, 2.6.3 and 2.8.2. 

c) Note that the case of difference frequency mixing (DFM) is also solved here - it is just a 
matter of what input waves are there. Show an example for DFM, illustrating an OPA 
(strong pump at w3 and a weak seed at w1. (This is an extension of the plot 2.8.2 that 
includes saturation.)

d) For sum-frequency generation, determine input conditions that allow complete 
conversion of the two inputs to w3 without any back conversion. (Hint: consider the Manley-
Rowe relations.)
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ü Problem 4: Numerical solutions of quasi phase matching
Plot the growth of signal for second-harmonic generation in a quasi-phasematched crystal 
in which the deff is modulated sinusoidally. Make plots for two cases, 1st order and 3rd 
order quasi-phase matching. 

ü Problem 5: second-harmonic generation (non-depleted case)
Boyd problem 2.19

2   hw3 solns.nb


