
Chapter 4

Fourier Analysis

4.1 Motivation

At the beginning of this course, we saw that superposition of functions in terms of sines
and cosines was extremely useful for solving problems involving linear systems. For
instance, when we studied the forced harmonic oscillator, we first solved the problem
by assuming the forcing function was a sinusoid (or complex exponential). This turned
out to be easy. We then argued that since the equations were linear this was enough to
let us build the solution for an arbitrary forcing function if only we could represent this
forcing function as a sum of sinusoids. Later, when we derived the continuum limit of
the coupled spring/mass system we saw that separation of variables led us to a solution,
but only if we could somehow represent general initial conditions as a sum of sinusoids.
The representation of arbitrary functions in terms of sines and cosines is called Fourier

analysis.

Jean Baptiste Joseph Fourier. Born: 21 March 1768 in Auxerre. Died:
16 May 1830 in Paris. Fourier trained as a priest and nearly lost his
head (literally) in the French revolution. He is best known for his
work on heat conduction. Fourier established the equation governing
diffusion and used infinite series of trigonometric functions to solve it.
Fourier was also a scientific adviser to Napoleon’s army in Egypt.
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4.2 The Fourier Series

So, the motivation for further study of such a Fourier superposition is clear. But there
are other important reasons as well. For instance, consider the data shown in Figure 4.1.

These are borehole tiltmeter measurements. A tiltmeter is a device that measures the
local tilt relative to the earth’s gravitational field. The range of tilts shown here is
between -40 and 40 nanoradians! (There are 2 π radians in 360 degrees, so this range
corresponds to about 8 millionths of a degree.) With this sensitivity, you would expect
that the dominant signal would be due to earth tides. So buried in the time-series on the
top you would expect to see two dominant frequencies, one that was diurnal (1 cycle per
day) and one that was semi-diurnal (2 cycles per day). If we somehow had an automatic
way of representing these data as a superposition of sinusoids of various frequencies, then
might we not expect these characteristic frequencies to manifest themselves in the size of
the coefficients of this superposition? The answer is yes, and this is one of the principle
aims of Fourier analysis. In fact, the power present in the data at each frequency is
called the power spectrum. Later we will see how to estimate the power spectrum using
a Fourier transform.

You’ll notice in the tiltmeter spectrum that the two peaks (diurnal and semi-diurnal
seem to be split; i.e., there are actually two peaks centered on 1 cycle/day and two
peaks centered on 2 cycles/day. Consider the superposition of two sinusoids of nearly
the same frequency:

sin((ω − ǫ)t) + sin((ω + ǫ)t).

Show that this is equal to
2 cos(ǫt) sin(ωt).

Interpret this result physically, keeping in mind that the way we’ve set the problem
up, ǫ is a small number compared to ω. It might help to make some plots. Once
you’ve figured out the interpretation of this last equation, do you see evidence of the
same effect in the tiltmeter data?

There is also a drift in the tiltmeter. Instead of the tides fluctuating about 0 tilt,
they slowly drift upwards over the course of 50 days. This is likely a drift in the
instrument and not associated with any tidal effect. Think of how you might correct

the data for this drift.

As another example Figure 4.2 shows 50 milliseconds of sound (a low C) made by a
soprano saxophone and recorded on a digital oscilloscope. Next to this is the estimated
power spectrum of the same sound. Notice that the peaks in the power occur at integer
multiples of the frequency of the first peak (the nominal frequency of a low C).
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Figure 4.1: Borehole tiltmeter measurements. Data courtesy of Dr. Judah Levine (see
[?] for more details). The plot on the top shows a 50 day time series of measurements.
The figure on the bottom shows the estimated power in the data at each frequency over
some range of frequencies. This is known as an estimate of the power spectrum of the
data. Later we will learn how to compute estimates of the power spectrum of time series
using the Fourier transform. Given what we know about the physics of tilt, we should
expect that the diurnal tide (once per day) should peak at 1 cycle per day, while the
semi-diurnal tide (twice per day) should peak at 2 cycles per day. This sort of analysis
is one of the central goals of Fourier theory.
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Figure 4.2: On the left is .05 seconds of someone playing low C on a soprano saxophone.
On the right is the power spectrum of these data. We’ll discuss later how this computation
is made, but essentially what you’re seeing the power as a function of frequency. The first
peak on the right occurs at the nominal frequency of low C. Notice that all the higher
peaks occur at integer multiples of the frequency of the first (fundamental) peak.

Definition of the Fourier Series

For a function periodic on the interval [−l, l], the Fourier series is defined to be:

f(x) =
a0

2
+

∞∑
n=1

an cos(nπx/l) + bn sin(nπx/l). (4.2.1)

or equivalently,

f(x) =
∞∑

n=−∞

cne
inπx/l. (4.2.2)

We will see shortly how to compute these coefficients. The connection between the real
and complex coefficients is:

ck =
1

2
(ak − ibk) c

−k =
1

2
(ak + ibk). (4.2.3)

In particular notice that the sine/cosine series has only positive frequencies, while the
exponential series has both positive and negative. The reason is that in the former case
each frequency has two functions associated with it. If we introduce a single complex
function (the exponential) we avoid this by using negative frequencies. In other words,
any physical vibration always involves two frequencies, one positive and one negative.

Later on you will be given two of the basic convergence theorems for Fourier series. Now
let’s look at some examples.



4.2. THE FOURIER SERIES 109

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 4.3: Absolute value function.

4.2.1 Examples

Let f(x) = abs(x), as shown in Figure 4.3. The first few terms of the Fourier series are:

1

2
−

4 cos(π x)

π2
−

4 cos(3 π x)

9 π2
−

4 cos(5 π x)

25 π2
(4.2.4)

This approximation is plotted in Figure 4.3.

Observations

Note well that the convergence is slowest at the origin, where the absolute value function
is not differentiable. (At the origin, the slope changes abruptly from -1 to +1. So the
left derivative and the right derivative both exist, but they are not the same.) Also, as
for any even function (i.e., f(x) = f(−x)) only the cosine terms of the Fourier series are
nonzero.

Suppose now we consider an odd function (i.e., f(x) = −f(−x)), such as f(x) = x. The
first four terms of the Fourier series are

2 sin(π x)

π
−

sin(2 π x)

π
+

2 sin(3 π x)

3 π
−

sin(4 π x)

2 π
(4.2.5)

Here you can see that only the sine terms appear, and no constant (zero-frequency) term.
A plot of this approximation is shown in Figure 4.4.

So why the odd behavior at the endpoints? It’s because we’ve assume the function is
periodic on the interval [−1, 1]. The periodic extension of f(x) = x must therefore have
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Figure 4.4: First four nonzero terms of the Fourier series of the function f(x) = abs(x).
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Figure 4.5: First four nonzero terms of the Fourier series of the function f(x) = x.
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Figure 4.6: Periodic extension of the function f(x) = x relative to the interval [0, 1].

a sort of sawtooth appearance. In other words any non-periodic function defined on a
finite interval can be used to generate a periodic function just by cloning the function
over and over again. Figure 4.6 shows the periodic extension of the function f(x) = x
relative to the interval [0, 1]. It’s a potentially confusing fact that the same function will
give rise to different periodic extensions on different intervals. What would the periodic
extension of f(x) = x look like relative to the interval [−.5, .5]?

4.3 Superposition and orthogonal projection

Now, recall that for any set of N linearly independent vectors xi in RN , we can represent
an arbitrary vector z in RN as a superposition

z = c1x1 + c2x2 + · · ·+ cNxN , (4.3.1)

which is equivalent to the linear system

z = X · c (4.3.2)

where X is the matrix whose columns are the xi vectors and c is the vector of unknown
expansion coefficients. As you well know, matrix equation has a unique solution c if and
only if the xi are linearly independent. But the solution is especially simple if the xi are
orthogonal. Suppose we are trying to find the coefficients of

z = c1q1 + c2q2 + · · ·+ qN , (4.3.3)

when qi · qj = δij . In this case we can find the coefficients easily by projecting onto the
orthogonal directions:

ci = qi · z, (4.3.4)



112 CHAPTER 4. FOURIER ANALYSIS

or, in the more general case where the q vectors are orthogonal but not necessarily
normalized

ci =
qi · z

qi · qi
. (4.3.5)

We have emphasized throughout this course that functions are vectors too, they just
happen to live in an infinite dimensional vector space (for instance, the space of square
integrable functions). So it should come as no surprise that we would want to consider a
formula just like 4.3.3, but with functions instead of finite dimensional vectors; e.g.,

f(x) = c1q1(x) + c2q2(x) + · · ·+ cnqn(x) + · · · . (4.3.6)

In general, the sum will require an infinite number of coefficients ci, since a function has
an infinite amount of information. (Think of representing f(x) by its value at each point
x in some interval.) Equation 4.3.6 is nothing other than a Fourier series if the q(x)
happen to be sinusoids. Of course, you can easily think of functions for which all but a
finite number of the coefficients will be zero; for instance, the sum of a finite number of
sinusoids.

Now you know exactly what is coming. If the basis functions qi(x) are “orthogonal”, then
we should be able to compute the Fourier coefficients by simply projecting the function
f(x) onto each of the orthogonal “vectors” qi(x). So, let us define a dot (or inner) product
for functions on an interval [−l, l] (this could be an infinite interval)

(u, v) ≡
∫ l

−l
u(x)v(x)dx. (4.3.7)

Then we will say that two functions are orthogonal if their inner product is zero.

Now we simply need to show that the sines and cosines (or complex exponentials) are
orthogonal. Here is the theorem. Let φk(x) = sin(kπx/l) and ψk(x) = cos(kπx/l). Then

(φi, φj) = (ψi, ψj) = lδij (4.3.8)

(φi, ψj) = 0. (4.3.9)

The proof, which is left as an exercise, makes use of the addition formulae for sines and
cosines. (If you get stuck, the proof can be found in [2], Chapter 10.) A similar result
holds for the complex exponential, where we define the basis functions as ξk(x) = eikπx/l.

Using Equations 4.3.8 and 4.3.9 we can compute the Fourier coefficients by simply pro-
jecting f(x) onto each orthogonal basis vector:

an =
1

l

∫ l

−l
f(x) cos(nπx/l)dx =

1

l
(f, ψn), (4.3.10)

and

bn =
1

l

∫ l

−l
f(x) sin(nπx/l)dx =

1

l
(f, φn). (4.3.11)


