1. Given the linear system

$$
\begin{aligned}
6 x_{1}+18 x_{2}-4 x_{3} & =20 \\
-x_{1}-3 x_{2}+8 x_{3} & =4 \\
5 x_{1}+15 x_{2}-9 x_{3} & =11
\end{aligned}
$$

Determine the general solution to the linear system and describe this set geometrically.
2. Given the following augmented matrix

$$
\left[\begin{array}{ll|l}
1 & 3 & 2 \\
3 & h & k
\end{array}\right] .
$$

Determine h and k such that the corresponding linear system is:
(a) consistent with a unique solution.
(b) consistent with infinitely many solutions.
(c) inconsistent.
3. Determine if \mathbf{b} is a linear combination of the vectors formed from the columns of the matrix \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{cc}
5 & 3 \\
-4 & 7 \\
9 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
22 \\
20 \\
15
\end{array}\right]
$$

4. Determine the values of h for which the vectors are linearly dependent.

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
7 \\
8
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right]
$$

5. Given,

$$
\mathbf{A}=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right] .
$$

(a) Is \mathbf{w} in the column space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Col} \mathbf{A}$?
(b) Is \mathbf{w} in the null space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Nul} \mathbf{A}$?

