1. See second file.
2. Let $A=\left[\begin{array}{ccc}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible $\mathbf{b}$ and describe the set of all $\mathbf{b}$ for which $A \mathbf{x}=\mathbf{b}$ does have a solution. Row reducing the corresponding augmented matrix yields:

$$
\left[\begin{array}{cccc}
1 & -3 & -4 & b_{1} \\
-3 & 2 & 6 & b_{2} \\
5 & -1 & -8 & b_{3}
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & -3 & -4 & b_{1} \\
0 & -7 & -6 & b_{2}+3 b_{1} \\
0 & 14 & 12 & b_{3}-5 b_{1}
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & -3 & -4 & b_{1} \\
0 & -7 & -6 & b_{2}+3 b_{1} \\
0 & 0 & 0 & b_{1}+2 b_{2}+b_{3}
\end{array}\right]
$$

If $b_{1}+2 b_{2}+b_{3} \neq 0$ the system is inconsistent. However, if $b_{1}+2 b_{2}+b_{3}=0 \Rightarrow b_{1}=-2 b_{2}-b_{3}$, the system will be consistent. Thus, for all $\mathbf{b}=b_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+b_{3}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ the system is consistent.
3. Define

$$
A=\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & 7 \\
-2 & -8 & 2 & -1
\end{array}\right], B=\left[\begin{array}{cc}
5 & 3 \\
-4 & 7 \\
9 & -2
\end{array}\right], \text { and } b=\left[\begin{array}{c}
22 \\
20 \\
15
\end{array}\right]
$$

(a) Do the columns of $A$ span $\mathbb{R}^{4}$ ?

Row reducing $A$ to echelon form yields:

$$
\rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & -1 & -1 & 5 \\
0 & -2 & -2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -7
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there is not a pivot in every row, $A$ does not span $\mathbb{R}^{4}$.
(b) Is $\mathbf{b}$ a linear combination of the columns of $B$ ?

Row reducing the corresponding augmented matrix yields:

$$
\left[\begin{array}{ccc}
5 & 3 & 22 \\
-4 & 7 & 20 \\
9 & -2 & 15
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
5 & 3 & 22 \\
0 & 47 / 5 & 188 / 5 \\
0 & -37 / 5 & -123 / 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & -37 & -123
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & 0 & 1175 / 47
\end{array}\right]
$$

Since the last column is a pivot column, this system is inconsistent. Thus b can not be written as a linear combination of the columns of $B$.
4. Let $\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 9 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}3 \\ -4 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right]$.

Forming the corresponding matrix and row-reducing to echelon form:

$$
\left[\begin{array}{ccc}
0 & 3 & -4 \\
9 & -4 & 1 \\
1 & 1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
9 & -4 & 1 \\
0 & 3 & -4
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -13 & -8 \\
0 & 3 & -4
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -13 & -8 \\
0 & 0 & -76 / 13
\end{array}\right]
$$

(a) Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ form a linearly independent set?

Since there is a pivot in each column, the set is linearly independent.
(b) Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span $\mathbb{R}^{3}$ ?

Since there is a pivot in every row, the set spans $\mathbb{R}^{3}$
5. Do the columns of $A=\left[\begin{array}{ccc}-4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6\end{array}\right]$ form a linearly independent set? Justify your answer. Row reducing $A$ to echelon form yields:

$$
\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
-4 & -3 & 0 \\
5 & 4 & 6
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
0 & -3 & 12 \\
0 & 4 & -9
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
0 & 0 & 0 \\
0 & 0 & 7
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
0 & 0 & 7 \\
0 & 0 & 0
\end{array}\right]
$$

Since there are no free variables, these vectors are linearly independent.

