1. Given,

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

(a) What is the basis and dimension of $\operatorname{Nul} \mathbf{A}$?
(b) What is the basis and dimension of $\operatorname{Col} \mathbf{A}$?
(c) What is the basis and dimension of Row A?
(d) What is the Rank of \mathbf{A} ?
2. Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

Determine \mathbf{A}^{-1} via:
(a) Calculate $\operatorname{det}(\mathbf{A})$.
(b) The Gauss-Jordan Method (pg.317).
(c) The cofactor representation (Theorem 2 pg .318).
(d) Check your result by showing $\mathbf{A A}^{-1}=\mathbf{I}$
3. Given,

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

(a) Determine the eigenvalues of \mathbf{A}.
(b) Determine the eigenvectors of \mathbf{A}.

Hint: Use a cofactor expansion along the first row to get $(4-\lambda)(1-\lambda)^{2}+2(1-\lambda)=0$.
4. Given,

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 0 \tag{1}\\
6 & -1
\end{array}\right]
$$

Calculate \mathbf{A}^{1000} and \mathbf{A}^{1001}.
5. Let,

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right]
$$

Show that the eigenvectors of \mathbf{A} are orthonormal.

$$
\text { 3. } A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & +5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right] \begin{aligned}
& R 2=R 2+R 1 \\
& R 3=R 3-2 R 1 \\
& R 4=R 4+R 1
\end{aligned}\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & -3 & 1 & -1 \\
0 & 0 & 9 & -2 & 6
\end{array}\right] \sim
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 3 & 6 & 2 & 5 \\
0 & 0 & +3 & -1 & +1 \\
0 & 0 & -3 & +1 & -1 \\
0 & 0 & 9 & -2 & 6
\end{array}\right] R 3=R 3+R 2\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 13 & -1 & +1 \\
0 & 0 & 0 & 0 & 0 \\
0 & {\left[\begin{array}{cccc}
2 & -3 & 6 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B} \\
& P . C
\end{aligned}
$$

a. $B \Rightarrow A \vec{x} \cdot 0$ has the genersolution set,

$$
\begin{aligned}
& x_{4}=-3 x_{5} \\
& x_{3}=\frac{\left(x_{4}-x\right)}{3}=\frac{\left(3 x_{5}-x_{5}\right)}{3}=\frac{1}{3} x_{5} \\
& x_{1}=\frac{1}{2}\left(3 x_{2}^{3}-6 x_{3}-2 x_{4}-5 x_{5}\right)=\frac{1}{2}\left(x_{2}-6\left(-\frac{4}{3} x_{5}\right)-2\left(-3 x_{5}\right)-5 x_{5}\right)= \\
& -\left(3 x_{2}+8 x_{5}+6 x_{5}-5 x_{5}\right)=\frac{3 x_{2}}{2}+\frac{9 x_{5}}{2} \\
& x_{2}=\text { free } \\
& x_{5}=\text { free } \quad \Rightarrow \vec{x}=x_{2}\left[\begin{array}{c}
3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
9 / 2 \\
0 \\
-4 / 3 \\
-3 \\
1
\end{array}\right], x_{2}, x_{5} \in \| R
\end{aligned}
$$

Thus the Basis for Nula is

$$
B_{\text {Null }}=\left\{\left[\begin{array}{c}
3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
9 / 2 \\
0 \\
-4 / 3 \\
-3 \\
1
\end{array}\right]\right\}
$$

and $\operatorname{dim}\left(N_{u} \mid A\right)=\operatorname{dim} B_{\text {NulL }}=2$
b. $B \Rightarrow$ That the basis for the column space of A is the pivot columns $\vec{a}_{1}, \vec{a}_{3}, \vec{a}_{4}$ of A.

$$
B_{\text {cult }}=\left\{\left[\begin{array}{c}
2 \\
-2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
-3 \\
4 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
5 \\
-4
\end{array}\right]\right\}
$$

and

$$
\operatorname{dim}(\operatorname{Co} \mid A)=\operatorname{dim} B_{\cot A}=3
$$

C. $B \Rightarrow$ The Basis for Row A is given as

$$
\begin{aligned}
& B_{\text {row a }}=\left\{\begin{array}{c}
{[2,-3,6,2,5]} \\
{[0,0,3,-1,1]} \\
{[0,0,6,1,3]}
\end{array}\right\} \\
& \operatorname{dim}\left(R_{\text {and }}\right)=\operatorname{dim} B_{\text {rama }}=3
\end{aligned}
$$

