1. Let Λ be a nonempty indexing set and let $\mathcal{A} = \{A_{\alpha} \mid \alpha \in \Lambda\}$ be an indexed family of sets. Also, assume that $\Gamma \subseteq \Lambda$ and that $\Gamma \neq \emptyset$. Prove:

$$\bigcup_{\alpha \in \Gamma} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$$

Proof. Let $x \in \bigcup_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \exists i \in \Gamma$ such that $x \in A_i$, and since $\Gamma \subseteq \Lambda$, $i \in \Lambda$. Thus we know $A_i \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$ and since $x \in A_i$, we have $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Therefore $\bigcup_{\alpha \in \Gamma} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$.

2. Using mathematical induction show that given any two real numbers a and b, a - b is a factor of $a^n - b^n$ for all $n \in \mathbb{N}$.

Proof. Using induction on n we have:

Basis step: For n = 1 we have a - b is a factor of $a^1 - b^1$ which is a true statement.

Inductive step: Assume for n = k that a - b is a factor of $a^k - b^k$ and show this implies for n = k + 1 that a - b is a factor of $a^{k+1} - b^{k+1}$.

Consider

$$a^{k+1} - b^{k+1} = a \cdot a^k - b \cdot b^k = a \cdot a^k - a \cdot b^k + a \cdot b^k - b \cdot b^k = a(a^k - b^k) + (a - b)b^k$$

From our basis step (and in general) we see that (a - b) divides $(a - b)b^k$ and from our inductive step we know that (a - b) divides $a(a^k - b^k)$. Therefore, (a - b) divides $a(a^k - b^k) + (a - b)b^k = a^{k+1} - b^{k+1}$.

Thus, for all $n \in \mathbb{N}$ a - b is a factor of $a^n - b^n$.

3. Prove

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$
 for all $n \in \mathbb{N}$

Proof. Using induction on n we have:

Basis step: For n = 1 we have $\frac{1}{\sqrt{1}} \ge \sqrt{1}$ which is a true.

Inductive step: Assume for n = k that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} \ge \sqrt{k} \tag{1}$$

and show that this implies for n = k + 1 we have

$$\frac{1}{\sqrt{1}} + \dots + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1} \tag{2}$$

We see that the left hand side of (1) and (2) differ by $\frac{1}{\sqrt{k+1}}$. Thus, adding this term to the right hand side of (1) gives

$$\frac{1}{\sqrt{1}} + \dots + \frac{1}{\sqrt{k+1}} \ge \sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}} \ge \frac{\sqrt{k(k+1)}}{\sqrt{k+1}} \ge \frac{\sqrt{k(k+1)}}{\sqrt{k}} = \sqrt{(k+1)}$$

or, in short,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1}$$

Therefore, $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$ for all $n \in \mathbb{N}$.

4. Let $f: S \to T$ be a function with C and D subsets of T. Prove: $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

Proof. Let $x \in f^{-1}(C \cap D)$ and consider

$$\begin{aligned} x \in f^{-1}(C \cap D) &\Leftrightarrow f(x) \in C \cap D \\ &\Leftrightarrow f(x) \in C \text{ and } f(x) \in D \\ &\Leftrightarrow x \in f^{-1}(C) \text{ and } x \in f^{-1}(D) \\ &\Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D) \end{aligned}$$

Therefore, $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

5. Let $f: S \to T$ be a function. Prove that $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of S if and only if f is an injection.

Proof. We will prove each part of the if and only if separately:

- ⇒ If $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of S then f is an injection. Let $x, y \in S$ such that f(x) = f(y) = z for $z \in f(A \cap B)$. Also, since our hypothesis is true for all subsets A and B of S, consider the subsets A = S and $B = \{x\}$. Then $A \cap B = \{x\}$ and $f(x) \in f(A \cap B)$. Also, we see that $f(y) \in f(A \cap B)$ since f(y) = f(x). Since $f(A \cap B) = f(A) \cap f(B)$, $f(y) \in f(A) \cap f(B) \Rightarrow f(y) \in f(A)$ and $f(y) \in f(B) \Rightarrow y \in B$. Thus, y = x and we can conclude that f is an injection.
- $\leftarrow \text{ If } f \text{ is an injection then } f(A \cap B) = f(A) \cap f(B) \text{ for all subsets } A \text{ and } B \text{ of } S. \\ \text{Let } y \in f(A \cap B). \text{ Then, since } f \text{ is an injection, there exists a unique } x \in A \cap B \text{ such that } f(x) = y. \\ x \in A \cap B \Rightarrow x \in A \text{ and } x \in B \Rightarrow y = f(x) \in f(A) \text{ and } y = f(x) \in f(B). \text{ Thus, } y \in f(A) \cap f(B). \\ \text{Therefore } f(A \cap B) \subseteq f(A) \cap f(B). \\ \text{Now let } y \in f(A) \cap f(B) \Rightarrow y \in f(A) \text{ and } y \in f(B). \text{ Since } y \in f(A), \text{ we know there exists an } x_1 \in A \text{ such that } f(A) = f(A) \cap f(B). \\ \text{Now let } y \in f(A) \cap f(B) \Rightarrow y \in f(A) \text{ and } y \in f(B). \text{ Since } y \in f(A), \text{ we know there exists an } x_1 \in A \text{ such that } f(A) = A \text{ su$

Now let $y \in f(A) \cap f(B) \Rightarrow y \in f(A)$ and $y \in f(B)$. Since $y \in f(A)$, we know there exists an $x_1 \in A$ such that $f(x_1) = y$. Similarly, $y \in f(B) \Rightarrow$ there exists an $x_2 \in B$ such that $f(x_2) = y$. However, since f is an injection, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Thus, there exists a unique $x \in A \cap B$ such that $f(x) = y \Rightarrow y \in f(A \cap B)$. Therefore $f(A) \cap f(B) \subseteq f(A \cap B)$

Thus $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of S.