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1. Let Λ be a nonempty indexing set and let A = {Aα |α ∈ Λ} be an indexed family of sets. Also, assume that Γ ⊆ Λ
and that Γ 6= ∅.
Prove: ⋃

α∈Γ

Aα ⊆
⋃
α∈Λ

Aα

Proof. Let x ∈
⋃
α∈Γ

Aα ⇒ ∃ i ∈ Γ such that x ∈ Ai, and since Γ ⊆ Λ, i ∈ Λ.

Thus we know Ai ⊆
⋃
α∈Λ

Aα and since x ∈ Ai, we have x ∈
⋃
α∈Λ

Aα.

Therefore
⋃
α∈Γ

Aα ⊆
⋃
α∈Λ

Aα.

2. Using mathematical induction show that given any two real numbers a and b, a− b is a factor of an − bn for all n ∈ N.

Proof. Using induction on n we have:

Basis step: For n = 1 we have a− b is a factor of a1 − b1 which is a true statement.

Inductive step: Assume for n = k that a− b is a factor of ak − bk and show this implies for n = k+ 1 that a− b is a
factor of ak+1 − bk+1.
Consider

ak+1 − bk+1 = a · ak − b · bk = a · ak − a · bk + a · bk − b · bk = a(ak − bk) + (a− b)bk

From our basis step (and in general) we see that (a − b) divides (a − b)bk and from our inductive step we know
that (a− b) divides a(ak − bk). Therefore, (a− b) divides a(ak − bk) + (a− b)bk = ak+1 − bk+1.

Thus, for all n ∈ N a− b is a factor of an − bn.

3. Prove
1√
1

+
1√
2

+ · · ·+ 1√
n
≥
√
n for all n ∈ N.

Proof. Using induction on n we have:

Basis step: For n = 1 we have
1√
1
≥
√

1 which is a true.

Inductive step: Assume for n = k that
1√
1

+
1√
2

+ · · ·+ 1√
k
≥
√
k (1)

and show that this implies for n = k + 1 we have

1√
1

+ · · ·+ 1√
k + 1

≥
√
k + 1 (2)

We see that the left hand side of (1) and (2) differ by
1√
k + 1

.

Thus, adding this term to the right hand side of (1) gives

1√
1

+ · · ·+ 1√
k + 1

≥
√
k +

1√
k + 1

=

√
k(k + 1) + 1√

k + 1
≥

√
k(k + 1)√
k + 1

≥
√
k(k + 1)√

k
=

√
(k + 1)

or, in short,
1√
1

+
1√
2

+ · · ·+ 1√
k + 1

≥
√
k + 1

Therefore,
1√
1

+
1√
2

+ · · ·+ 1√
n
≥
√
n for all n ∈ N.



4. Let f : S → T be a function with C and D subsets of T .
Prove: f−1(C ∩D) = f−1(C) ∩ f−1(D).

Proof. Let x ∈ f−1(C ∩D) and consider

x ∈ f−1(C ∩D)⇔ f(x) ∈ C ∩D
⇔ f(x) ∈ C and f(x) ∈ D
⇔ x ∈ f−1(C) and x ∈ f−1(D)

⇔ x ∈ f−1(C) ∩ f−1(D)

Therefore, f−1(C ∩D) = f−1(C) ∩ f−1(D).

5. Let f : S → T be a function. Prove that f(A ∩ B) = f(A) ∩ f(B) for all subsets A and B of S if and only if f is an
injection.

Proof. We will prove each part of the if and only if separately:

⇒ If f(A ∩B) = f(A) ∩ f(B) for all subsets A and B of S then f is an injection.
Let x, y ∈ S such that f(x) = f(y) = z for z ∈ f(A ∩ B). Also, since our hypothesis is true for all subsets A
and B of S, consider the subsets A = S and B = {x}. Then A ∩ B = {x} and f(x) ∈ f(A ∩ B). Also, we see
that f(y) ∈ f(A ∩B) since f(y) = f(x). Since f(A ∩B) = f(A) ∩ f(B), f(y) ∈ f(A) ∩ f(B)⇒ f(y) ∈ f(A) and
f(y) ∈ f(B)⇒ y ∈ B. Thus, y = x and we can conclude that f is an injection.

⇐ If f is an injection then f(A ∩B) = f(A) ∩ f(B) for all subsets A and B of S.
Let y ∈ f(A ∩B). Then, since f is an injection, there exists a unique x ∈ A ∩B such that f(x) = y.
x ∈ A ∩B ⇒ x ∈ A and x ∈ B ⇒ y = f(x) ∈ f(A) and y = f(x) ∈ f(B). Thus, y ∈ f(A) ∩ f(B).
Therefore f(A ∩B) ⊆ f(A) ∩ f(B).
Now let y ∈ f(A) ∩ f(B) ⇒ y ∈ f(A) and y ∈ f(B). Since y ∈ f(A), we know there exists an x1 ∈ A such that
f(x1) = y. Similarly, y ∈ f(B) ⇒ there exists an x2 ∈ B such that f(x2) = y. However, since f is an injection,
f(x1) = f(x2)⇒ x1 = x2. Thus, there exists a unique x ∈ A ∩B such that f(x) = y ⇒ y ∈ f(A ∩B).
Therefore f(A) ∩ f(B) ⊆ f(A ∩B)
Thus f(A ∩B) = f(A) ∩ f(B) for all subsets A and B of S.


