1. Let Λ be a nonempty indexing set and let $\mathcal{A}=\left\{A_{\alpha} \mid \alpha \in \Lambda\right\}$ be an indexed family of sets. Also, assume that $\Gamma \subseteq \Lambda$ and that $\Gamma \neq \varnothing$.
Prove:

$$
\bigcup_{\alpha \in \Gamma} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}
$$

Proof. Let $x \in \bigcup_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \exists i \in \Gamma$ such that $x \in A_{i}$, and since $\Gamma \subseteq \Lambda, i \in \Lambda$.
Thus we know $A_{i} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$ and since $x \in A_{i}$, we have $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}$.
Therefore $\bigcup_{\alpha \in \Gamma} A_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda}^{\alpha \in \Lambda} A_{\alpha}$.
2. Using mathematical induction show that given any two real numbers a and $b, a-b$ is a factor of $a^{n}-b^{n}$ for all $n \in \mathbb{N}$.

Proof. Using induction on n we have:
Basis step: For $n=1$ we have $a-b$ is a factor of $a^{1}-b^{1}$ which is a true statement.
Inductive step: Assume for $n=k$ that $a-b$ is a factor of $a^{k}-b^{k}$ and show this implies for $n=k+1$ that $a-b$ is a factor of $a^{k+1}-b^{k+1}$.
Consider

$$
a^{k+1}-b^{k+1}=a \cdot a^{k}-b \cdot b^{k}=a \cdot a^{k}-a \cdot b^{k}+a \cdot b^{k}-b \cdot b^{k}=a\left(a^{k}-b^{k}\right)+(a-b) b^{k}
$$

From our basis step (and in general) we see that $(a-b)$ divides $(a-b) b^{k}$ and from our inductive step we know that $(a-b)$ divides $a\left(a^{k}-b^{k}\right)$. Therefore, $(a-b)$ divides $a\left(a^{k}-b^{k}\right)+(a-b) b^{k}=a^{k+1}-b^{k+1}$.

Thus, for all $n \in \mathbb{N} a-b$ is a factor of $a^{n}-b^{n}$.
3. Prove

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n} \text { for all } n \in \mathbb{N}
$$

Proof. Using induction on n we have:
Basis step: For $n=1$ we have $\frac{1}{\sqrt{1}} \geq \sqrt{1}$ which is a true.
Inductive step: Assume for $n=k$ that

$$
\begin{equation*}
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}} \geq \sqrt{k} \tag{1}
\end{equation*}
$$

and show that this implies for $n=k+1$ we have

$$
\begin{equation*}
\frac{1}{\sqrt{1}}+\cdots+\frac{1}{\sqrt{k+1}} \geq \sqrt{k+1} \tag{2}
\end{equation*}
$$

We see that the left hand side of (1) and (2) differ by $\frac{1}{\sqrt{k+1}}$.
Thus, adding this term to the right hand side of (1) gives

$$
\frac{1}{\sqrt{1}}+\cdots+\frac{1}{\sqrt{k+1}} \geq \sqrt{k}+\frac{1}{\sqrt{k+1}}=\frac{\sqrt{k(k+1)}+1}{\sqrt{k+1}} \geq \frac{\sqrt{k(k+1)}}{\sqrt{k+1}} \geq \frac{\sqrt{k(k+1)}}{\sqrt{k}}=\sqrt{(k+1)}
$$

or, in short,

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k+1}} \geq \sqrt{k+1}
$$

Therefore, $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n}$ for all $n \in \mathbb{N}$.
4. Let $f: S \rightarrow T$ be a function with C and D subsets of T.

Prove: $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
Proof. Let $x \in f^{-1}(C \cap D)$ and consider

$$
\begin{aligned}
x \in f^{-1}(C \cap D) & \Leftrightarrow f(x) \in C \cap D \\
& \Leftrightarrow f(x) \in C \text { and } f(x) \in D \\
& \Leftrightarrow x \in f^{-1}(C) \text { and } x \in f^{-1}(D) \\
& \Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D)
\end{aligned}
$$

Therefore, $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
5. Let $f: S \rightarrow T$ be a function. Prove that $f(A \cap B)=f(A) \cap f(B)$ for all subsets A and B of S if and only if f is an injection.

Proof. We will prove each part of the if and only if separately:
\Rightarrow If $f(A \cap B)=f(A) \cap f(B)$ for all subsets A and B of S then f is an injection.
Let $x, y \in S$ such that $f(x)=f(y)=z$ for $z \in f(A \cap B)$. Also, since our hypothesis is true for all subsets A and B of S, consider the subsets $A=S$ and $B=\{x\}$. Then $A \cap B=\{x\}$ and $f(x) \in f(A \cap B)$. Also, we see that $f(y) \in f(A \cap B)$ since $f(y)=f(x)$. Since $f(A \cap B)=f(A) \cap f(B), f(y) \in f(A) \cap f(B) \Rightarrow f(y) \in f(A)$ and $f(y) \in f(B) \Rightarrow y \in B$. Thus, $y=x$ and we can conclude that f is an injection.
\Leftarrow If f is an injection then $f(A \cap B)=f(A) \cap f(B)$ for all subsets A and B of S.
Let $y \in f(A \cap B)$. Then, since f is an injection, there exists a unique $x \in A \cap B$ such that $f(x)=y$.
$x \in A \cap B \Rightarrow x \in A$ and $x \in B \Rightarrow y=f(x) \in f(A)$ and $y=f(x) \in f(B)$. Thus, $y \in f(A) \cap f(B)$.
Therefore $f(A \cap B) \subseteq f(A) \cap f(B)$.
Now let $y \in f(A) \cap f(B) \Rightarrow y \in f(A)$ and $y \in f(B)$. Since $y \in f(A)$, we know there exists an $x_{1} \in A$ such that $f\left(x_{1}\right)=y$. Similarly, $y \in f(B) \Rightarrow$ there exists an $x_{2} \in B$ such that $f\left(x_{2}\right)=y$. However, since f is an injection, $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. Thus, there exists a unique $x \in A \cap B$ such that $f(x)=y \Rightarrow y \in f(A \cap B)$.
Therefore $f(A) \cap f(B) \subseteq f(A \cap B)$
Thus $f(A \cap B)=f(A) \cap f(B)$ for all subsets A and B of S.

