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phase	matching	

1me	domain	representa1on	of	2nd	order	response	
ideal	SHG	output	spectrum	

Phase	matching:	an	important	applica3on	for	the	the	angle-
dependent	refrac3ve	index	

Recall	that	for	SHG:		
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Conversion	will	be	most	efficient	if	 Δk = 0
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1 1( ) (2 )n nω ω= This	is	the	phase-matching	condi2on	for	SHG	
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Real	crystal	dispersion	data	

•  Best	resource:	refrac1veindex.info	
•  Others:	crystal	manufacturers,	Handbook	of	Op1cs	

 
no

2 = 2.7405 + 0.0184
λ 2 − 0.0179

－ 0.0155λ2

Example:	β-BBO	=	barium	borate,	BaB2O4	

 
ne

2 = 2.3730 + 0.0128
λ 2 − 0.0156

－ 0.0044λ2

λ	is	in	micrometers!	
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Type	I	phase	matching	
Input	at	1μm,	SH	at	0.5μm	
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Types	of	phase	matching	

•  Type	1:		
–  2ω	on	low	index	(ne)		
–  ω	on	high	(no)	
–  Opposite	polariza1ons	(χ(2)	tensor	allows	this)	

•  Type	2:		
–  2ω	on	low	index	(ne)	
–  Project	E1	equally		on	both	axes	(no	and	ne)	

•  Type	3:	
–  “non-cri1cal”	or	“90o”	phase	matching	
–  Temperature-tuned	
–  Only	for	par1cular	crystals	and	wavelengths	
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∫Integrate:	
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2Convert	to	intensity	

Non-depleted	pump	approxima1on:	treat	A1	as	constant	

As	a	func1on	of	L	and	fixed	|Δk|>0:		 I2 L( ) = ω 2
2d 2
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Yield	oscillates:	
•  Period	=	“coherence	length”	
•  Amplitude	propor1onal	to		

Lcoh = 2π / Δk
max I2( )∝1/ Δk2

Prac1cal	issues	

•  Phase	matching	bandwidth	
–  Type	1	has	more	BW,	choose	L	of	crystal	

•  Group	velocity	walk-off	(for	short	pulses)	
•  Angular	acceptance	
•  Birefringent	beam	walk-off	
•  Strength	of	nonlinearity	
•  Crystal	damage	threshold	
•  Thermal	stability:		
–  typically	angle-tuned,	temperature	stabilized	

•  Available	size	of	crystals,	$$	
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Inversion	symmetry	

•  If	a	material	has	inversion	symmetry,	then	χ(2)	(and	
all	even	orders)	must	be	zero.		
–  Suppose	we	have	a	2nd	order	response,		
–  Driven	by	a	wave:	
– With	inversion	symmetry,	changing	the	sign	of	E(t)	should	
change	sign	of	P(2)(t)	

–  This	cannot	be	true,	so	such	a	material	can’t	have	χ(2)			

		P
(2) t( ) = ε0χ (2)E2 t( )

		E t( ) = E0 cosωt

		−P
(2) t( ) = ε0χ (2) −E t( )( )2 = ε0χ (2)E2 t( )

Time-domain	representa1on	of	linear	response		

•  For	linear	response,	we	can	calculate	response	of	medium	as	
fcn	of	ω.	This	is	the	frequency	response,	H(ω)	

•  There	is	a	corresponding	impulse	response	h(t)=FT-1{H(ω)}	

	
•  Finite	1me	response	results	from	resonance	
•  Causal:	h(t)=0	for	t<0	
•  Linear	response:		

		 
R(1) t( ) =F −1 χ (2) ω( ){ }= 1
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Time-domain	response	to	general	input	

•  Convolve	impulse	response	with	input	

–  Start	integra1on	at	τ=0:	h(τ)=0	for	τ<0	(causality)	
–  Output	can	only	depend	on	previous	history	

•  For	EM:	

•  By	convolu1on	thm:	we	can	evaluate	in	ω-domain	

		
fout t( ) = h τ( ) fin t −τ( )dτ

0

∞

∫

		
P(1) t( ) = ε0 R(1) τ( )E t −τ( )dτ

0

∞

∫

		P
(1) ω( ) = ε0χ (1) ω( )E ω( )

Time	dependent	NL	response	

•  By	extension,	we	can	define	the	2nd	order	NL	
response	in	the	1me	domain:	

–  Causality:	
•  Again,	finite	1me	response	results	from	frequency	
response	of	χ(2).		
–  If	we	ignore	frequency	dependence,	we	also	assume	
instantaneous	response.		

–  OK	for	non-resonant	electronic	response	
–  Not	OK:	Raman	response,	slow	nonlineari1es	(molecular,	
thermal,	…)		

		
P(2) t( ) = ε0 dτ1 dτ2R
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		R
(2) τ1 ,τ2( ) =0		for	τ1 <0	or	τ2 <0
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Frequency	response	of	phase	matched	SHG	

•  Even	if	we	assume	the	NL	response	is	instantaneous	at	the	
microscopic	level,	phase	mismatch	leads	to	a	frequency	
dependence	of	the	output:	sinc2(Δk/2)	

•  For	pulsed	input,	this	limits	the	dura1on	of	the	output	
•  In	1me	domain,	this	leads	to	a	rectangular	output	pulse	
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Short	pulse	harmonic	conversion	

•  Although	the	phase	matching	is	best	described	in	the	
frequency	domain,	the	nonlinear	interac1on	takes	
place	in	the	1me	domain.		
–  For	perfect	phase	matching	across	the	bandwidth,	non-
depleted	conversion	for	the	qth	harmonic	is:	

–  This	leads	to	an	output	pulse	shorter	than	the	input		
		
dEq z ,t( )
dz

∝χ (q)E1
q t( )

		E1 t( ) = E0e−t
2/τ12

		Eq t( )∝e−qt2/τ 2 		τ q = τ1 / q
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Ideal	output	bandwidth	

•  For	a	transform-limited	pulse	

–  	τ,	Δω	are	1/e2	half-widths	
–  Independent	of	the	central	frequency	or	wavelength	

•  In	terms	of	wavelength:	

•  In	the	lab,	we	measure	wavelength	
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Generalized	spectral	shape	for	SHG	

•  Since	the	output	(non-depleted,	phase-matched)	is	

•  The	spectrum	is	obtained	with	the	Fourier	transform	

•  Use	convolu1on	theorem:	

–  The	ideal	output	spectrum	is	the	autoconvolu1on	of	the	
input	spectrum	

		E2 t( )∝χ (2)E1
2 t( )

		 E2 ω( )∝χ (2)F E1 t( )E1 t( ){ }

		E2 ω( )∝χ (2)E1 ω( )⊗E1 ω( ) = χ (2) E1 ′ω( )E1 ω − ′ω( )d ′ω∫


