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phase matching
time domain representation of 2"9 order response
ideal SHG output spectrum

Phase matching: an important application for the the angle-
dependent refractive index

Recall that for SHG:
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This is the phase-matching condition for SHG

n(w) =n2aw,)
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Real crystal dispersion data

Best resource: refractiveindex.info
Others: crystal manufacturers, Handbook of Optics

Example: B-BBO = barium borate, BaB,0,

2 0.0184 )
n, =2.7405 + 22-00179 —0.01554 A is in micrometers!
nf =23730 + 20‘07]28_ 0.0044 A2 n. < n, everywhere, so we need
L A°-0.0156 to angle tune
. Type | phase matching
\ N Input at 1um, SH at 0.5um
o ° Input along n,
' Output can be tuned
N, <n.(6)<ng
1.60
nE
ISSP——0uw |
10 15 20 A(um)
Types of phase matching
* Type 1:
29 _o,
— 2w on low index (n,) Ak=2 (@) c . (@2.9)
— won high (n,) =22, (0,)-n,(,.6))

— Opposite polarizations (x2 tensor allows this)

* Type 2:

— 2w on low index (n,) Ne=2n (0,)+ 20, (0,.0)- L0, (0,.0)
. C C C
— Project E, equally on both axes (n, and n,)
* Type 3:

— “non-critical” or “90°” phase matching
— Temperature-tuned

— Only for particular crystals ang wetglengths-n, («,.9,7))
c
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SHG without phase-matching

Non-depleted pump approximation: treat A; as constant
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As a function of L and fixed | Ak|>0: I,(L)=—2 II—

2enin,c’ ! AK?
Yield oscillates:

* Period = “coherence length” L., =2m/Ak

* Amplitude proportional to max( )oc 1/ A2

2 sin *(AkL/2)

Practical issues

* Phase matching bandwidth
— Type 1 has more BW, choose L of crystal

* Group velocity walk-off (for short pulses)
* Angular acceptance

* Birefringent beam walk-off

* Strength of nonlinearity

* Crystal damage threshold

* Thermal stability:
— typically angle-tuned, temperature stabilized

* Available size of crystals, $S
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Inversion symmetry

* If a material has inversion symmetry, then x2 (and
all even orders) must be zero.
— Suppose we have a 2" order response, P(Z)(t)=€ol(2)52(t)
— Driven by a wave: E t)oncoswt

— With inversion symmetry, changing the sign of E(t) should
change sign of P)(t)

_p® (t)= 801[2)(—E(t))2 = gol(Z)Ez(t)

— This cannot be true, so such a material can’t have 2

Time-domain representation of linear response

* For linear response, we can calculate response of medium as
fcn of w. This is the frequency response, H(w)
* There is a corresponding impulse response h(t)=FT-{H(w)}

Amplitude 10 x(t)
X A : I
[\ - Small damping impulse(t)

| ,/_

|\
I 5|

H _ Medium damping
/A 0

\\_ Heavy damping

'\

[ % 31, 7 -0
2 2 Driving
frequency 0 5 10 15 20

* Finite time response results from resonance
* Causal: h(t)=0 for t<0

* Linear response: R“)(t)zj-"1{;&”(@)}:%7%”(@%"“”da)
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Time-domain response to general input

Convolve impulse response with input
fouc(t)zjh(f)ﬁn(t—f)dr

— Start integration at t1=0: h(t)=0 for t<0 (causality)
— Output can only depend on previous history

For EM: b
P“)(t)z gojR(” (T)E(t—f)df

0

By convolution thm: we can evaluate in w-domain

P“)(w):eox(”(a))E(w)

Time dependent NL response

By extension, we can define the 2" order NL
response in the time domain:

Pm(t):gojdrl_[drzR(z)(rl,rz)El(t—fl)Ez(t—fz)
0 0
— Causality: R(Z)(‘L'l,Tz):O for 7, <0 or 7,<0
Again, finite time response results from frequency
response of x(2),

— If we ignore frequency dependence, we also assume
instantaneous response.

— OK for non-resonant electronic response

— Not OK: Raman response, slow nonlinearities (molecular,
thermal, ...)




Frequency response of phase matched SHG

* Even if we assume the NL response is instantaneous at the
microscopic level, phase mismatch leads to a frequency
dependence of the output: sinc?(Ak/2)
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* For pulsed input, this limits the duration of the output
* In time domain, this leads to a rectangular output pulse

Short pulse harmonic conversion

* Although the phase matching is best described in the
frequency domain, the nonlinear interaction takes
place in the time domain.

— For perfect phase matching across the bandwidth, non-
depleted conversion for the gt harmonic is:

dE (z,t
t;(; ) ocmelq(t)
— This leads to an output pulse shorter than the input
E(t)=Ee™™  E(t)ece " v, =1,/\q
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Ideal output bandwidth

* For a transform-limited pulse
TAw=2
— 1, Aw are 1/e? half-widths
— Independent of the central frequency or wavelength

* In terms of wavelength:

2

0
(00 2,0 T 2,0 TCcT

* In the lab, we measure wavelength

AL AT g 1
- M o=t D NT _ = py
Tq Tl/\/; q ﬂCTq qz e, q3/2 1

Generalized spectral shape for SHG

* Since the output (non-depleted, phase-matched) is
E, ()2 B} (t)

* The spectrum is obtained with the Fourier transform

EZ(w)“Z(ZJf{El(t)El(t)}

* Use convolution theorem:
Ez(w)oc)((Z]El(a))(@El(w):;((Z)JEl(w’)El(w—w’)dw’

— The ideal output spectrum is the autoconvolution of the
input spectrum




