38 ELECTROMAGNETIC THEORY

POLARIZATION

From Guenther: "Modern Optics," Chapter 2

The displacement of a transverse wave is a vector quantity. We must there-
fore specify not only the frequency, phase, and direction of the wave but
also the magnitude and direction of the displacement. The direction of the
displacement vector is called the direction of polarization and the plane con-
taining the direction of polarization and the propagation vector is called the
plane of polarization. This quantity has the same name as the field quantity
introduced in (2-5). Because the two terms describe completely different
physical phenomena, there should be no danger of confusion.

From our study of Maxwell's equations, we know that E and H. for
a plane wave in free space, are mutually perpendicular and lie in a plane
normal to the direction of propagation k. We also know that, given one of the
two vectors, we can use (2-17) to obtain the other. Convention requires that
we use the electric vector to label the direction of the electromagnetic wave's
polarization. The selection of the electric field is not completely arbitrary.
From (2-29) and (2-30), we can write the ratio of the forces on a moving
charge in an electromagnetic field due to the electric and magnetic fields as

FE _ €E
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We can replace B, using (2-19) to obtain

Fe c

Fr = o (2-33)
where v is the velocity of the moving charge. Assume that a charged particle
is traveling in air at the speed of sound so that v = 335 m/sec; then the
force due to the electric field of a light wave on that particle would be
8.9x10° times larger than the force due to the magnetic field. The size of
these numbers demonstrates that except in relativistic situations, when v = ¢,
the interaction of the electromagnetic wave with matter will be dominated
by the electric field.

A conventional vector notation is used to describe the polarization of

a light wave; however, to visualize the behavior of the electric field vector
as light propagates, a geometrical construction is useful. The geometrical
construction, called a Lissajous’ figure, describes the path followed by the
tip of the electric field vector.

Polarization Ellipse

Assume that a plane wave is propagating in the z direction and the electric
field, determining the direction of polarization, is oriented in the x, v plane.
In complex notation, the plane wave is given by

E = Eoe.ﬁ.‘mt ker+d) _ Eoeifmr—kz+fb]
This wave can be written in terms of the x and v components of Eg
E = one_f{f_-;r kz+d5;]i " E[}yeith—kz.i-mg]j (2_34}

(We will use only the real part of E for manipulation to prevent errors.) We
divide each component of the electric field by its maximum value so that the
problem is reduced to one of the following two sinusoidally varying unit vectors:
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FIGURE 2-3. Geometrical construction showing how the Lissajous’ figures are constructed
from harmonic motion along the x and y coordinate axes. The harmonic motion along each
coordinated axis is created by projecting a vector rotating around a circle onto the axis
according to the technique discussed in Appendix 1B-1.

§_x = cos{wt — kz + ¢1) = coslet — kz) cos ¢ — sinlwt — kz) sin ¢
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When these unit vectors are added together, the result will be a set of figures
called Lissajous’ figures. The geometrical construction shown in Figure 2-3
can be used to visualize the generation of the Lissajous’ figure. The harmonic
motion along the x axis is found by projecting a vector rotating around a
circle of diameter Eg, onto the x axis. The harmonic motion along the v axis
is generated the same way using a circle of diameter Egy. The resulting x
and v components are added to obtain E. In Figure 2-3, the two harmonic
oscillators both have the same frequency (wt — kz), but differ in phase by
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The tip of the electric field E in Figure 2-3 traces out an ellipse, with its axes
aligned with the coordinate axes. To determine the direction of the rotation

of the vector, assume that ¢ = 0, 2 = — /2, and z = O so that
E
x Y
— = cos wt —= = sin wt
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The normalized vector E can easily be evaluated at a number of values of wt
to discover the direction of rotation. Table 2.3 shows the value of the vector



TABLE 2.3 Rotating E-Field Vector

wt

0 i

K L(f+3
a4 ¥ (i+j)
m =

2 J

3T 1 =, =
Z E(—l +J?

as wt increases. The rotation of the vector E in Figure 2-3 is seen to be in
a counterclockwise direction, moving from the positive x direction, to the v
direction, and finally to the negative x direction.

To obtain the equation for the Lissajous’ figure, we eliminate the depen-
dence of the unit vectors on {wt — kz). First, multiply the equations by sin ¢
and sin ¢1, respectively, and then subtract the resulting equations. Second,
multiply the two equations by cos ¢2 and cos ¢, respectively, and then
subtract the new equations. These two operations yield the following pair of
equations:

i sin ¢o — *E— sin ¢1 = cos(wt — kz)(cos ¢;sin 2 — sin ¢y cos ¢s)
EOX EOy
E.

cos o — E cos ¢ = sin{wt — kz)(cos ¢ sin ¢z — sin b1 cos ¢z)
EOx EO_u

The term in parens can be simplified using the trig identity
sin & = sin(¢2 — ¢1) = cos ¢1sin ¢ — sin Py cos do

After replacing the term in parens by sin 6, the two equations are squared
and added, yielding the equation for the Lissajous’ figure
EV | |2 [ 2ExE, |

U l*| 5= sin? § -35)
o '.__Eo . cos 8 = sin (2-35)

[Ex
The trig identity
cos § = cos(da — ¢1) = cos é1cos do + sin ¢ sin b

was also used to further simplify (2-35).
Equation (2-35) has the same form as the equation of a conic

Ax® + Bxy + Cy* + Dx + Ey + F=0

Geometry defines the conic as an ellipse because from (2-35),

(cos d—1)=<0

This ellipse is called the polarization ellipse. The orientation of the ellipse
with respect to the x axis is
B =2 2E[)XE0__U cos o

2 = —
tan 26 A_C E{%x = E%y

(2-36)
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\ FIGURE 2-4. General form of
the ellipse described by (2-35).

i A= CandB# 0, then § = 45°. When & = = /2, then 8 = 0° as shown
in Figure 2-3.

The tip of the resultant electric field vector obtained from (2-34) traces
out the polarization ellipse in the plane normal to k, as predicted by
(2-35). A generalized polarization ellipse is shown in Figure 2-4. The x and
y coordinates of the electric field are bounded by *Eg, and *Eg,. The
rectangle in Figure 2-4 illustrates those limits. The component of the electric
field along the major axis of the ellipse is

Eym = Ex cos 6 + E, sin
and along the minor axis of the ellipse is
En=—E;sin 8 +E, cos 8
where @ is obtained from (2-36). The ratio of the length of the minor to

the major axis of the ellipse is equal to the ellipticity ¢, i.e., the amount of
deviation of the ellipse from a circle

, | Em | Eox sin ¢y sin 8 — Eg, sin ¢z cos 6
ang = - =

| Em/  Eox cos ¢y cos 6 + Egy cos ¢g sin f

(2-37)

To find the time dependence of the vector E, rewrite (2-34) in complex
form

E =e¢ il et — ki) ( } ECIXe idn + j E[}ye if,by;] {2'38)

This equation shows explicitly that the electric vector moves about the ellipse
in a sinusoidal motion.

By specifying the parameters that characterize the polarization ellipse
(6 and «). we completely characterize a wave's polarization. A review of two
special cases will aid in understanding the polarization ellipse.

Linear Polarization

First consider when 8 = 0 or ; then (2-35) becomes

Ef (B L (2R
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The ellipse collapses into a straight line with slope Eny/Eox. The equation of
the straight line is

E« _.E

Eox  Eoy



FIGURE 2-5. Lissajous’ figures for phase differences between the v and x components ot
oscillation of 0 and 7.

Figure 2-5 displays the straight-line Lissajous’ figures for the two phase
differences. The 6 parameter of the ellipse is the slope of the straight line

tan # = E%
O
resulting in the value of (2-36) being given by
_2 tan 9_ _ ZEOXEQU
1-tan? ¢ E§ —ES,
The ¢ parameter is given by (2-37) as tan ¢ = 0.
The time dependence of the E vector shown in Figure 2-5 is given by

(2-38). The real component is

E = (Eovi = Eo,j) cos(wt — kz)

At a fixed point in space, the x and vy components oscillate in phase (or 180°
out of phase) according to the equation

tan 28 =

E = (Eoxi = Egyj) coslwt — &)

The electric vector undergoes simple harmonic motion along the line defined
by Eo. and Eg,. At a fixed time, the electric field varies sinusoidally along the
propagation path (the z axis) according to the equation

E = (Eod * Eoyj) cos(d - kz)
This light is said to be linearly polarized.

Circular Polarization

The second case occurs when Eg, = Eoy = Eg and 8 = = #/2. From (2-35),
;é.!g + | E-‘f.'lz =1
| EG _.l o EG | —

The ellipse becomes a circle as shown in Figure 2-6. For this polarization,
tan 26 is indeterminate and tan ¢ = 1.
From (2-38), the temporal behavior is given by

E = Eglcos(wt — kz) i + sin(wt — kz) ]



FIGURE 2-6. Lissajous’ figures for the case
when the phase difference between the y and
x components of oscillation differ by = (2}
and the amplitudes of the two components
are equal. The tip of the electric field vector
shown mowves along the circle.

The time dependence of the angle W that the E field makes with the x axis
in Figure 2-6 can be obtained by finding the tangent of the angle W.
E, _ sin{wt—kz)

tan ¥ = ==

E = coslet — k2 = * tan(wt — kz)

The interpretation of this result is that at a fixed point in space, the E vector
rotates in a clockwise direction if 8 = 7/2 and a counterclockwise direction
if § = —a/2.

In particle physics, the light would be said to have a negative helicity
if it rotated in a clockwise direction. If we look at the source, the electric
vector seems to follow the threads of a left-handed screw, agreeing with the
nomenclature that left-handed quantities are negative. However, in optics
the light that rotates clockwise as we view it traveling toward us from the
source is said to be right-circularly polarized. The counterclockwise rotating
light is left-circularly polarized.

The association of right-circularly polarized light with “right handedness”
in optics came about by looking at the path of the electric vector in space
at a fixed time: then, tan'W = tan(¢ — kz). See Figure 2-7. As shown in
Figure 2-7, right-circular polarized light at a fixed time seems fo spiral in a
counterclockwise fashion along the z direction, following the threads of a
right-handed screw.

This motion can be generalized to include eliiptical polarized light when
Eox # Eo,. Figure 2-3 schematically displays the generation of the Lissajous’
figure for the case of § = w/2, but with unequal values of Egx and Ep,. Figure
2.8 shows two calculated Lissajous’ figures. If the electric vector moves
around the ellipse in a clockwise direction, as we face the source, then the
phase difference and ellipticity are

S|

= and 0<¢<—

0= 1

=}

and the polarization is right-handed. If the motion of the electric vector
is moving in a counterclockwise direction, then the phase difference and
ellipticity are
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FIGURE 2-7. The path of the electric vector of right-circular polarized light at a fixed time.

FIGURE 2-8. Lissajous’ figures for elliptical polarized light. They were calculated with Ey,=
0.75 and E;, = 0.25.

The orientation of either ellipse with respect to the x axis will be given by
(2-36) and will depend upon the relative magnitudes of Eox and Ej,.

The procedure used to decompose an arbitrary polarization into polariza-
tions parallel to two axes of a Cartesian coordinate systemn is a technique used
extensively in vector algebra to simplify mathematical calculations. According
to the mathematical formalism associated with this technique, the polarization

is described in terms of a set of basis vectors e;. An arbitrary polarization would
be expressed as

2

E=> ae (2-39)
i=1

The set of basis vectors e; is orthonormal, i.e.,
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1, i=j
e,-e',-*=5,-j=[0 i#)

where we have assumed that the basis vectors could be complex. We mention
this mathematical formalism because an identical formalism is encountered in

elementary particle physics in which it is used to describe spin.4
In a Cartesian coordinate system, the e;'s are the unit vectors i i, j, k. The

summation in {2-39) extends over only two terms because the electromagnetic
wave is transverse, confining E to a plane normal to the direction of propagation
(according to the coordinate convention we have selected, the E field is in the
x, v plane).

The polarization could also be described in terms of a right-circularly
polarized component

ER OK[ i coslwt — kz) — i sin{wt — kz)j
and a left-circularly polarized component
E, = EQL{} coslwt — kz) + j sin(wt - kz]]
An arbitrary elliptical polarization would then be written as
E= ER +E,

=i (Eqg + Eq.) coslot = kz) - [ (Eqg — Eoc) sinlwt —k2)  (2-40)

The geometrical construction that demonstrates the expression of an arbitrary
elliptical polarized light wave in terms of right and left circularly polarized waves
is shown in Figure 2-9. The use of circular polarized waves as the basis set for
describing polarization is discussed by Klein.®

In the formalism associated with (2-39), the expansion coefficients ¢; can
be used to form a 2—2 matrix, which in statistical mechanics is called the density
matrix and in optics the coherency matrix.? The elements of the matrix are
formed by the rule

pij = aag”

We will not develop the theory of polarization using the coherency matrix,
but simply use the coherency matrix to justify the need for four independent
measurements to characterize polarization. There is no unique set of measure-
ments required by theory but normally measurements made are of the Stokes
parameters, which are directly related to the polarization ellipse of Figure
2-4. (We will see in a few moments that only three of the four measurements
are independent. This will be in agreement with the definition of the coherency
matrix where p;; = p;;*, i.e., the matrix is Hermitian.)

N
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v FIGURE 2-9. Construction of elliptical polar-
ized light from two circularly polarized waves.



STOKES PARAMETERS

The Stokes parameters’ of a light wave are measurable quantities, defined
as

sp — Total flux density.

s1 — Difference between flux density transmitted by a linear
polarizer oriented parallel to the x axis and one oriented
parallel to the y axis. The x and y axes are usually
selected to be parallel to the horizontal and vertical direc-
tions in the laboratory.

sz — Difference between flux density transmitted by a linear
polarizer oriented at 45° to the x axis and one oriented

at 135°.

s3 —Difference between flux density transmitted by a right-
circular polarizer and a left-circular polarizer.

The physical instruments that can be used to measure the Stokes parameters
will be discussed in Chapter 13.

If the Stokes parameters are to characterize the polarization of a wave,
they must be related to the parameters of the polarization ellipse. It is there-
fore important to establish that the Stokes parameters are variables of the
polarization ellipse {2-35).

In its current form, (2-35) contains no measurable quantities and thus
must be modified if it is to be associated with the Stokes parameters. In the
discussion of the Poynting vector, it was pointed out that the time average of
the Poynting vector is the quantity observed when measurements are made
of light waves. We must, therefore, find the time average of (2-35) if we wish
to relate its parameters to observable quantities. To simplify the discussion,
assume that the amplitudes of the orthogonally polarized waves, Ej, and
Eqy and their relative phase & are constants. We will also use the shorthand
notation for a time average introduced in (2-24)

. 1 rta+T p
{ED = ?JK E3, [cos(wt — kz) cos ¢ — sin{wt — kz) sin (_bl_'z dt

The time average of (2-35) can now be written

<E_>2<> " g_.E@ _ 2<EXE§’>

cos 8 = sin® & (2-41)
B E, EoxEp,

Multiplying both sides of (2-41) by (2E04E,)? removes the terms in the
denominators of (2-41)
4E5 CE2) + 4E3 (E2) — 8Eo Eo,(E<E,) cos 8 = (2EqxEq, sin )2

The same argument that was used to simplify (2-25) can be used to obtain
the time averages for the first two terms

o EB5 Ed
E>=5. EH==

The calculation of the time average in the third term

EE,) = %E{JXE@ cos & (2-42)



FIGURE 2-10. Poincaré’s sphere.

is left as a problem, Problem 2-12. With these time averages, (2-41) can be
written as

4E%XE%L, ~ (2Eo«Eq, cos 8 = (2EoxEqy sin 8)?
If E3, + E%_U is added to both sides of this equation, it can be rewritten
(E2, + E3)? — (E, — E3,)? — (2Eq«Eqy cos 8)° = (2EoxEqy sin 5)° (2-43)

Each term in this equation can be identified with a Stokes parameter.

In our derivation, we required that the amplitudes and relative phase of
the two orthogonally polarized waves be a constant, but we can relax this
requirement and instead define the Stokes parameters as temporal averages.
With this modification, the terms of (2-43) become

S0 = <Ef2b<> + <E%;> 51 = <E%x>_ <E%v>

. (2-44)
sz = (2EoxEqy cos 8, s3 = (2Eo<Eq, sin 8)
FEquation (2-43) can now be written as
s§—sf—s5 =53 (2-45)

For a polarized wave, only three of the Stokes parameters are independent.
This agrees with the requirement placed on elements of the Hermitian
coherency matrix introduced above.

With this demonstration of the connection between the Stokes param-
eters and the polarization ellipse, the Stokes parameters can be written in
terms of the parameters of the polarization ellipse in Figure 2-4.

s; =5 cos 2¢ cos 26

sp =sp cos 2¢ sin 26 (2-46)

s3 =sp sin 2¢

It is this close relationship between the Stokes parameters and the polariza-
fion ellipse that makes the Stokes parameters a useful characterization of
polarization.

The Stokes parameters can be used to describe the degree of polariza-
tion defined as

Before it was discovered that
the Stokes parameters could be
treated as elements of a column
matrix, a geometric construction was
used to determine the effect of an
anisotropic medium on polarized light.
The parameters s1, 52,53 are viewed as
the Cartesian coordinates of a point
on a sphere of radius sp. This sphere
is called the Poincaré sphere® and is
shown in Figure 2-10.

On the sphere, right-hand polar-
ized light is represented by points on
the upper half-surface. Linear polar-
ization is represented by points on the
equator. Circular polarization is repre-
sented by the poles. With the devel-
opment of the matrix view of polariza-
tion, the usefulness of the Poincare’s
sphere has decreased and it is now,
for many people, only of historical
interest.
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V= % \,.-'s? + 8% + 8% (2-47)
[The equality of (2-45) applies to completely polarized light when V = 1.]
The degree of polarization can be used to characterize any light source that is
physically realizable. If the time averages used in the definition of the Stokes
parameters sp and s3 are zero,

E&>=<E3> and  so=2(EF)
then the light wave is said to be unpolarized and V = 0.

H. Mueller’” pointed out that the Stokes parameters can be thought of
as elements of a column matrix or a 4-vector; see Table 2.4.

|'II S0 |
51
| 52

' 53/

TABLE 2.4 Jones and Stokes Vectors

Horizontal Polarization

1
][
0 0
L0
Vertical Polarization

) 1

fo -1

11 0

0l

+45° Polarization

X 1
B! 0}
J2| 1

1
Lo
—45° Polarization
) 1
a1 0
J2| -1 -1
0
Right-Circular Polarization
Ml
1|1 0
J2|i 10
L1
Left-Circular Polarization
) [1




This view will allow us to follow a polarized wave through a series of optical
devices through the use of matrix algebra as we will see later.

There is one other representation of polarized light, complementary to the
Stokes parameters, developed by R. Clark Jones in 1941 and called the
Jones vector. It is superior to the Stokes vector in that it handles light of
a known phase and amplitude with a reduced number of parameters. It is
inferior to the Stokes vector in that, unlike the Stokes representation, that is
experimentally determined, the Jones representation cannot handle unpo-
larized or partially polarized light. The Jones vector is a theoretical construct
that can only describe light with a well-defined phase and frequency. The
density matrix formalism can be used to correct the shortcomings of the
Jones vector, but then the simplicity of the Jones representation is lost.

If we assume that the coordinate system is such that the electromag-
netic wave is propagating along the z axis, it was shown earlier that any
polarization could be decomposed into two orthogonal E vectors, say for
this discussion, parallel to the x and v directions. The Jones vector is defined
as a two-row, column matrix consisting of the complex components in the
x and v direction

. [ Eoxexp {ilwt — ker + ¢1)}
~ | Egpexp {ilwt — ker + ¢2)}
If absolute phase is not an issue, then we may normalize the vector by

dividing by that number (real or complex) that simplifies the components but
keeps the sum of the square of the components equal to 1. For example,

(2-48)

E(Jx 1
E= — — explilwt — ker + ¢1)]] %e'ﬁ
JE&+E§, Eo,

The normalized vector would be the terms contained within the bracket,
each divided by 1/ /2 if Egx = Egy. The general form of the Jones vector is

E—‘LB, E* = [A* B

Some examples of Jones vectors (on the left) and Stokes vectors (on the
right) are shown in Table 2.4.

JONES VECTOR





