Quote of Homework: Linear Algebra Part II - Solutions

Walk without rhythm, and it won't attract the worm. If you walk without rhythm, you never learn.

Norman Quentin Cook: Weapon of Choice (2000)

1. Vocabulary of Vector Spaces

Given,

$$
\left.\begin{array}{c}
\mathbf{A}_{1}=\left[\begin{array}{r}
5 \\
-4 \\
9
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
22 \\
20 \\
15
\end{array}\right], \\
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
7 \\
8
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right], \\
\mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{r}
-3 \\
9 \\
-6
\end{array}\right], \quad \mathbf{w}_{3}=\left[\begin{array}{r}
5 \\
-7 \\
h
\end{array}\right], \\
\mathbf{x}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{r}
2 \\
1 \\
3
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}
3 \\
1 \\
2
\end{array}\right], \\
\mathbf{A}_{2}=\left[\begin{array}{rr}
-8 & -2 \\
6 & 4
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
2 \\
2 \\
4 \\
0
\end{array}\right] .
\end{array}\right] .
$$

Before we get into these problems we record the following row-reductions:
(1)
(3)
(4)
(5)

$$
\begin{aligned}
{\left[\mathbf{A}_{1} \mid \mathbf{b}_{1}\right] } & \sim\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{V}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]=\left[\begin{array}{rrr}
1 & -5 & 1 \\
-1 & 7 & 1 \\
-3 & 8 & h
\end{array}\right] & \sim\left[\begin{array}{rrr|r}
1 & -5 & 1 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 h+20 & 0
\end{array}\right] \\
\mathbf{W}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right]=\left[\begin{array}{rrr}
1 & -3 & 5 \\
-3 & 9 & -7 \\
2 & -6 & h
\end{array}\right] & \sim\left[\begin{array}{rrr}
1 & -3 & 5 \\
0 & 0 & 8 \\
0 & 0 & h-10
\end{array}\right] \\
{[\mathbf{X} \mid \mathbf{y}]=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \mid \mathbf{y}\right]=\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
-1 & 3 & 6 & 2
\end{array}\right] } & \sim\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

1.1. Linear Combinations. Is \mathbf{b}_{1} a linear combination of the columns of \mathbf{A}_{1} ?

Recall the the following equivalence for $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i} \tag{6}
\end{equation*}
$$

which says that the matrix product is the same as a linear combination of its columns. So, asking if a vector, \mathbf{b}, is a linear combination of columns is also asking if $\mathbf{A x}=\mathbf{b}$ has a solution. Either way we study the pivot structure of $[\mathbf{A} \mid \mathbf{b}]$. Thus, from above we have that $\mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1}$ has no solution and therefore \mathbf{b}_{1} cannot be written as a linear combination of the columns from \mathbf{A}.
1.2. Linear Dependence. Determine all values for h such that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ forms a linearly dependent set.

A set of n-many vectors, \mathbf{v}_{i}, forms a linearly independent set if and only if $c_{i}=0$ for $i=1,2,3, \ldots, n$ is the only solution to $\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}=\mathbf{0}$. This is equivalent to asking if $\mathbf{V c}=\mathbf{0}$ has only the trivial solution, where \mathbf{V} is a matrix formed by the set of vectors. If a homogeneous system has the trivial solution then there must be a pivot for every variable. If we want the vectors to form a linearly dependent set then we must have the existence of free variables. Thus, from above, we require $h=-10$.
1.3. Linear Independence. Determine all values for h such that $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ forms a linearly independent set.

We repeat the argument of 1.2 and now require a pivot for each variable. In this case we have no values of h such that $c_{1}=c_{2}=c_{3}=0$ is the only solution to $\sum_{i=1}^{3} c_{i} \mathbf{w}_{i}=0$. Thus, the vectors ALWAYS form a linearly dependent set.
1.4. Spanning Sets. How many vectors are in $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$? How many vectors are in $\operatorname{span}(S)$? Is $\mathbf{y} \in \operatorname{span}(S)$?

This is all a question of language. The set S has three elements. However, the spanning set of S is the set of all linear combinations of the vectors in S. That is, the spanning set of S is every vector that takes the form, $\sum_{i=1}^{3} c_{i} \mathbf{x}_{i}$ for any $c_{i} \in \mathbb{R}$. This spanning set, by definition has infinitely many elements. ${ }^{1}$ Finally, we ask if \mathbf{y} is in this spanning set, which is really asking if there are c_{i} 's such that \mathbf{y} can be written as $\sum_{i=1}^{3} c_{i} \mathbf{x}_{i}$. Again, this is the same as asking if $\mathbf{X c}=\mathbf{y}$, which is addressed by understanding the solubility of $[\mathbf{X} \mid \mathbf{y}]$. From the previous row-reductions we see that this system has a solution, in fact is has many, and therefore $\mathbf{y} \in \operatorname{span}(S)$.
1.5. Matrix Spaces. Is $\mathbf{b}_{2} \in \operatorname{Nul}\left(\mathbf{A}_{2}\right)$? Is $\mathbf{b}_{2} \in \operatorname{Col}\left(\mathbf{A}_{2}\right)$?

Recall that the null-space of a matrix is the set of all solutions to $\mathbf{A x}=\mathbf{0}$. This space tells us about all the points in space the homogeneous linear equations simultaneously intersect. One way to determine if \mathbf{b}_{2} is in the null-space of \mathbf{A}_{2} is by solving the homogeneous equation and determining if \mathbf{b}_{2} is one of these solutions. However, it pays to note that if \mathbf{b}_{2} is in the null-space of \mathbf{A}_{2} then $\mathbf{A}_{2} \mathbf{b}_{2}=\mathbf{0}$. A quick check shows,

$$
\mathbf{A}_{2} \mathbf{b}_{2}=\left[\begin{array}{rrr}
-8 & -2 & -9 \tag{7}\\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right]\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]=\mathbf{0}
$$

The column space, on the other hand, is a little different. The column space is the set of all linear combinations of the columns of \mathbf{A}_{2}. This is also called the spanning set of the columns of \mathbf{A}_{2}. Thus, this question can be addressed in the same way as problem 1.1 or the last part of 1.4 and we have,

$$
\left[\mathbf{A}_{2} \mid \mathbf{b}_{2}\right] \sim\left[\begin{array}{rrr|r}
-8 & -2 & -9 & 2 \tag{8}\\
0 & 20 & 10 & 20 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The conclusion is that \mathbf{b}_{2} is in both the null-space and column space of \mathbf{A}_{2}. This is not generally true of a non-trivial vector. In fact, it is never true for rectangular coefficient data.

[^0]Given,

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

The following problems will require the use of an echelon form of \mathbf{A}. One such form is,

$$
\mathbf{A} \sim\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \tag{9}\\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\mathbf{B}
$$

2.1. Null Space. Determine a basis and the dimension of $\operatorname{Nul}(\mathbf{A})$.

The null-space of \mathbf{A} is the set of all solutions to $\mathbf{A x}=\mathbf{0}$. To find a basis for this space we must explicitly solve the homogeneous equation. Thus, from the echelon form \mathbf{B} we have the following,

$$
\begin{aligned}
x_{4} & =-3 x_{5} \\
x_{3} & =\left(x_{4}-x_{5}\right) / 3=\left(-3 x_{5}-x_{5}\right) / 3=-\frac{4}{3} x_{5} \\
x_{1} & =\frac{1}{2}\left(3 x_{2}-6 x_{3}-2 x_{4}-5 x_{5}\right)=\frac{1}{2}\left(3 x_{2}-6\left(-\frac{4}{3} x_{5}\right)-2\left(-3 x_{5}\right)-5 x_{5}\right)= \\
& =\frac{1}{2}\left(3 x_{2}+8 x_{5}+6 x_{5}-5 x_{5}\right)=\frac{3}{2} x_{2}+\frac{9}{2} x_{5} \\
x_{2} & \in \mathbb{R} \\
x_{5} & \in \mathbb{R} \\
& \Rightarrow \mathbf{x}=x_{2}\left[\begin{array}{r}
3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-9 / 2 \\
0 \\
-4 / 3 \\
-3 \\
1
\end{array}\right] \quad x_{2}, x_{5} \in \mathbb{R}
\end{aligned}
$$

Hence, the basis for $\operatorname{Nul}(\mathbf{A})$ is

$$
B_{\text {null }}=\left\{\left[\begin{array}{r}
3 / 2 \tag{10}\\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-9 / 2 \\
0 \\
-4 / 3 \\
-3 \\
1
\end{array}\right]\right\}
$$

and $\operatorname{dim}(\operatorname{Nul} \mathbf{A})=2$. The conclusion is that the five linear four-dimensional objects intersect at many points in \mathbb{R}^{5}. The collection of points forms a two-dimensional subspace, which is spanned by the basis vectors. That is, the linear objects intersect forming a planer subspace of $\mathbb{R}^{5} .{ }^{2}$
2.2. Column Space. Determine a basis and the dimension of $\operatorname{Col}(\mathbf{A})$.

The column-space is the set of all linear combinations of the columns of \mathbf{A}. We would like to know a basis for this space, which implies that we must somehow determine the columns of the \mathbf{A} matrix that contain unique directional information. That is, we must find the linearly independent columns of the A matrix. This information has been made clear through the previous null-space problem. Recall that if a set of vectors is linearly independent then their corresponding homogeneous equation must only have the trivial solution. Since row-reduction does not change the solution to a homogeneous equation we have,

$$
\begin{equation*}
\mathbf{A x}=\mathbf{0} \Longleftrightarrow[\mathbf{A} \mid \mathbf{0}] \sim[\mathbf{B} \mid \mathbf{0}] \Longleftrightarrow \mathbf{B x}=\mathbf{0} \tag{11}
\end{equation*}
$$

So, we can see if the columns of \mathbf{A} are linearly independent by considering the linear independence of the columns of \mathbf{B}. Clearly, the previous problem shows that the columns of \mathbf{B} are not linearly independent. However, it is also clear from \mathbf{B} that the columns without pivots can be made using the columns with pivots, $\mathbf{b}_{2}=-3 / 2 \mathbf{b}_{1}$ and $\mathbf{b}_{5}=3 \mathbf{b}_{4}+4 / 3 \mathbf{b}_{3}-(9 / 2) \mathbf{b}_{1}$. So, if we take only the pivot columns

[^1]from \mathbf{B} then we would loose the linearly dependent columns and their free-variables. Consequently, the only solution to $\mathbf{B}_{\text {change }}=\mathbf{0}$ would be the trivial solution, which implies the columns are linearly independent.

There is still a problem. While row-reduction did not change the dependence relation, it did change the actual vectors. That is, the column-space of \mathbf{A} is different the the column-space of \mathbf{B}. To see this consider the constants neceesary for $\mathbf{a}_{1} \stackrel{?}{=} c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{3}+c_{3} \mathbf{b}_{4} .{ }^{3}$ So, the conclusion is that we must take the linearly independent columns from \mathbf{A} as told to us by \mathbf{B}. Thus, a basis for the column space of \mathbf{A} are the pivot columns of \mathbf{A},

$$
B_{C o l A}=\left\{\left[\begin{array}{r}
2 \tag{12}\\
-2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{r}
6 \\
-3 \\
9 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
-3 \\
5 \\
-4
\end{array}\right]\right\}
$$

and $\operatorname{dim}(\operatorname{Col} \mathbf{A})=3$. The dimension of the column-space is also known as the rank of \mathbf{A}. From this we see an example of the so-called rank-nullity theorem, which says that the dimension of the null-space and the dimension of the column-space must always add to be the total number of columns in the matrix. That is,

$$
\operatorname{Rank} \mathbf{A}+\operatorname{dim}\left(\operatorname{Nul}(\mathbf{A})=n, \text { where } \mathbf{A} \in \mathbb{R}^{m \times n}\right.
$$

2.3. Row Space. Determine a basis and the dimension of Row A. What is the Rank of A?

The row-space of a matrix is the set of all linear combinations of its rows. A basis can be found by taking only the linearly independent rows of the matrix, which can be clearly seen as the non-zero rows of any echelon form. While in the case of a column-space the columns must necessarily come from the original matrix, this is not a requirement for the row-space. ${ }^{4}$ Thus, a basis for the row-space of \mathbf{A} is given by,

$$
B_{\text {Row } A}=\left\{\begin{array}{c}
{[2-3} \tag{13}\\
{\left[\begin{array}{llll}
0 & 0 & 3 & - \\
l & 1 & 1
\end{array}\right]} \\
{[0}
\end{array} 0\right.
$$

Since these rows were chosen because of their pivots, the dimension of this space is always equal to the dimension of the column space and $\operatorname{dim}(\operatorname{Row} \mathbf{A})=\operatorname{Rank} \mathbf{A}=3 .{ }^{5}$

3. Eigenvalues and Eigenvectors

Given,

$$
\mathbf{A}_{1}=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right], \quad \mathbf{A}_{3}=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right], \quad \mathbf{A}_{4}=\left[\begin{array}{ll}
.1 & .6 \\
.9 & .4
\end{array}\right], \quad \mathbf{A}_{5}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

3.1. Eigenproblems. Find all eigenvalues and eigenvectors of \mathbf{A}_{i} for $i=1,2,3,4,5$.

Recall that the associated eigenproblem for a square matrix $\mathbf{A}_{n \times n}$ is defined by $\mathbf{A x}=\lambda \mathbf{x}$ whose solution is found via the following auxiliary equations:

- Characteristic Polynomial : $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
- Associated Null-space : $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$

For each of the previous matrices we have:

[^2]\[

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}_{1}-\lambda \mathbf{I}\right) & =(4-\lambda)(1-\lambda)^{2}+2(1-\lambda) \\
& =(1-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=0 \Longrightarrow \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3
\end{aligned}
$$
\]

Case $\lambda_{1}=1$:

$$
\left[\mathbf{A}_{1}-\lambda_{1} \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{rrr|r}
3 & 0 & 1 & 0 \\
-2 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
3 & 0 & 1 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& 3 x_{1}=-x_{3} \\
& -2 x_{1}=0 \\
& x_{2} \in \mathbb{R}
\end{aligned} \Rightarrow \mathbf{x}=\left[\begin{array}{c}
0 \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

A basis for this eigenspace associated with $\lambda=1$ is $B_{\lambda=1}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
Case $\lambda_{2}=2:$

$$
\begin{aligned}
{\left[\mathbf{A}_{1}-\lambda_{2} \mathbf{I} \mid \mathbf{0}\right] }
\end{aligned}=\left[\begin{array}{rrr|r}
2 & 0 & 1 & 0 \\
-2 & -1 & 0 & 0 \\
-2 & 0 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
2 & 0 & 1 & 0 \\
-2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{l}
x_{1}=-x_{3} / 2 \\
\\
\end{array}\right.
$$

A basis for this eigenspace is $B_{\lambda=2}=\left\{\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]\right\}$
Case $\lambda_{3}=3:$

$$
\left.\begin{array}{rl}
{\left[\mathbf{A}_{1}-\lambda_{3} \mathbf{I} \mid \mathbf{0}\right]}
\end{array}=\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
-2 & -2 & 0 & 0 \\
-2 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \text { (} \begin{array}{l}
x_{1}=-x_{3} \\
x_{2}=x_{3} \\
x_{3} \in \mathbb{R}
\end{array} \Rightarrow \mathbf{x}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] x_{3}\right]
$$

A basis for this eigenspace is $B_{\lambda=3}=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$.

$$
\operatorname{det}\left(\mathbf{A}_{2}-\lambda \mathbf{I}\right)=(3-\lambda)(1-\lambda)-(-2)=\lambda^{2}-4 \lambda+5 \Longrightarrow \lambda=\frac{-(-4) \pm \sqrt{16-4(1)(5)}}{2}=2 \pm i
$$

Case $\lambda=2 \pm i$:

$$
\left.\begin{array}{rl}
{\left[\mathbf{A}_{2}-\lambda \mathbf{I} \mid \mathbf{0}\right]}
\end{array}\right)=\left[\begin{array}{rr|r}
3-(2 \pm i) & 1 & 0 \\
-2 & 1-(2 \pm i) & 0
\end{array}\right]=
$$

Row-reduction with complex numbers is possible. However, it is easier to note that for a two-by-two system we can use either row, in this case the first,

$$
\begin{equation*}
(1 \mp i) x_{1}+1 x_{2}=0 \Longleftrightarrow(1 \mp i) x_{1}=-x_{2}, \tag{14}
\end{equation*}
$$

to define the ratio between x_{1} and $x_{2} \cdot{ }^{6}$ That is, if $x_{1}=-1$ then $x_{2}=1 \mp i$ and thus the eigenvectors, like the eigenvalues, come in complex conjugate pairs $\mathbf{x}=\left[\begin{array}{ll}-1 & 1 \mp i\end{array}\right]^{\mathrm{T}} .7$

[^3]Since \mathbf{A}_{3} is triangular we know the eigenvalues of \mathbf{A}_{3} are,

$$
\begin{aligned}
& \lambda_{1}=4 \quad(\text { With algebraic multiplicity of } 2) \\
& \lambda_{2}=2 \quad(\text { With algebraic multiplicity of } 2)
\end{aligned}
$$

Case $\lambda_{1}=4$:

$$
\left[\mathbf{A}_{3}-\lambda_{1} \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{rrrr|r}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
1 & 0 & 0 & -2 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& -2 x_{3}=0 \\
& x_{1}=2 x_{4} \\
& x_{2}, x_{4} \in \mathbb{R}
\end{aligned} \Rightarrow \mathbf{x}=\left[\begin{array}{c}
2 x_{4} \\
x_{2} \\
0 \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]
$$

Thus the basis for this eigenspace is $B_{\lambda=4}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
Case $\lambda=2$:

$$
\left[\mathbf{A}_{3}-\lambda_{2} \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{cccc|c}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=0 \\
& x_{2}=0 \\
& x_{3}, x_{4} \in \mathbb{R}
\end{aligned} \quad \Rightarrow \mathbf{x}=\left[\begin{array}{c}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

A basis for this eigenspace is $B_{\lambda=2}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{rr}
.1-\lambda & .6 \\
.9 & .4-\lambda
\end{array}\right]\right) & =(.4-\lambda)(.1-\lambda)-.54=\lambda^{2}-.5 \lambda-.54+.04= \\
& =\lambda^{2}-.5 \lambda-.5 \Rightarrow \lambda=\frac{-(-.5) \pm \sqrt{(-.5)^{2}-4(1)(-.5)}}{2(1)}=\frac{.5 \pm 1.5}{2} \Rightarrow \lambda_{1}=1, \lambda_{2}=-.5
\end{aligned}
$$

Case $\lambda_{1}=1$:

$$
\left[\mathbf{A}_{4}-\lambda_{1} \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{rr|r}
-.9 & .6 & 0 \tag{15}\\
.9 & .6 & 0
\end{array}\right] \sim\left[\begin{array}{rr|r}
-.9 & .6 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \mathbf{x}_{1}=\left[\begin{array}{l}
2 / 5 \\
3 / 5
\end{array}\right]
$$

Case $\lambda_{2}=-.5:$
(16)

$$
\left[\mathbf{A}_{4}-\lambda_{2} \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{ll|l}
.6 & .6 & 0 \\
.9 & .9 & 0
\end{array}\right] \sim\left[\begin{array}{lr|r}
.6 & .6 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \mathbf{x}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}_{5}-\lambda \mathbf{I}\right)=\lambda^{2}-1=0 \Longrightarrow \lambda= \pm 1 \tag{17}
\end{equation*}
$$

Case $\lambda= \pm 1$:

$$
\left[\mathbf{A}_{5}-\lambda \mathbf{I} \mid \mathbf{0}\right]=\left[\begin{array}{rr|r}
\mp 1 & -i & 0 \tag{18}\\
i & \mp 1 & 0
\end{array}\right] \Longrightarrow \mp x_{1}-i x_{2}=0 \Longleftrightarrow \mp x_{1}=i x_{2} \Longrightarrow \mathbf{x}=\left[\begin{array}{r}
i \\
\mp 1
\end{array}\right]
$$

3.2. Diagonalization. Find all matrices associated with the diagonalization of \mathbf{A}_{i} for $i=1,2,3,4,5$.

For each of the matrices we must find \mathbf{P}, \mathbf{D} and \mathbf{P}^{-1} such that $\mathbf{A}_{i}=\mathbf{P D P}{ }^{-1}$ for $i=3,4,5$. Recall:
If one finds n-many eigenvectors for an $n \times n$ matrix then it is possible to find a diagonal matrix similar to $\mathbf{A}_{n \times n}$. That is, if \mathbf{A} has n-many eigenvectors then \mathbf{A} has the following diagonal decomposition,

$$
\begin{equation*}
\mathbf{A}=\mathbf{P D P}^{-1} \tag{19}
\end{equation*}
$$

where \mathbf{D} is a diagonal matrix whose elements are eigenvalues of \mathbf{A} and \mathbf{P} is an invertible matrix whose columns are the eigenvectors corresponding to the eigenvalue elements of \mathbf{D}. For $i=3,4,5$ we have the following.

$$
\begin{align*}
& {\left[\mathbf{P}_{3} \mid \mathbf{I}\right] \sim\left[\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 / 2 & 0 & 0 & 1
\end{array}\right]=\left[\mathbf{I} \mid \mathbf{P}_{3}^{-1}\right] \text {, and } \mathbf{D}_{3}=\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]} \tag{20}\\
& \mathbf{P}_{4}=\left[\begin{array}{rr}
2 / 5 & 1 \\
3 / 5 & -1
\end{array}\right] \Longrightarrow \mathbf{P}_{4}^{-1}=\left[\begin{array}{rr}
1 & 1 \\
3 / 5 & -2 / 5
\end{array}\right] \text {, and } \mathbf{D}_{4}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1 / 2
\end{array}\right] \tag{21}\\
& \mathbf{P}_{5}=\left[\begin{array}{rr}
i & i \\
-1 & 1
\end{array}\right] \Longrightarrow \mathbf{P}_{5}^{-1}=\frac{1}{2 i}\left[\begin{array}{rr}
1 & -i \\
1 & i
\end{array}\right]=\frac{i}{2}\left[\begin{array}{rr}
-1 & i \\
-1 & -i
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
-i & -1 \\
-i & 1
\end{array}\right], \text { and } \mathbf{D}_{5}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \tag{22}
\end{align*}
$$

4. Regular Stochastic Matrices

For the regular stochastic matrix \mathbf{A}_{4}, define its associated steady-state vector, \mathbf{q}, to be such that $\mathbf{A}_{4} \mathbf{q}=\mathbf{q}$.
4.1. Limits of Time Series. Show that $\lim _{n \rightarrow \infty} \mathbf{A}_{4}^{n} \mathbf{x}=\mathbf{q}$ where $\mathbf{x} \in \mathbb{R}^{2}$ such that $x_{1}+x_{2}=1$.

First, we note that we have already found the steady-state vector \mathbf{q} since it is the eigenvector associated with $\lambda_{1}=1$. Now, the question is how to raise a matrix to an infinite power. Generally, it is unclear whether this processes converges and if it does, what it converges to. However, diagonalization offers us hope since,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{A}^{n}=\lim _{n \rightarrow \infty} \mathbf{P D}^{n} \mathbf{P}^{-1}=\mathbf{P} \lim _{n \rightarrow \infty} \mathbf{D}^{n} \mathbf{P}^{-1} \tag{23}
\end{equation*}
$$

where $\left[\mathbf{D}^{n}\right]_{i j}=d_{i i}^{2} \delta_{i j}$. Though calculating \mathbf{A}^{n} is hard, calculating \mathbf{D}^{n} is easy and more importantly, limiting processes on matrices now reduce to limiting processes on scalars, which is well-understood. In this case we have,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \mathbf{A}_{4}^{n} \mathbf{x}=\lim _{n \rightarrow \infty} \mathbf{P}_{4} \mathbf{D}_{4}^{n} \mathbf{P}_{4}^{-1} \mathbf{x} & =\left[\begin{array}{rr}
2 / 5 & 1 \\
3 / 5 & -1
\end{array}\right]\left[\begin{array}{rr}
\lim _{n \rightarrow \infty} 1^{n} & 0 \\
0 & \lim _{n \rightarrow \infty}(-.5)^{n}
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
3 / 5 & -2 / 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \tag{24}\\
& =\left[\begin{array}{ll}
.4 & .4 \\
.6 & .6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
.4\left(x_{1}+x_{2}\right) \\
.6\left(x_{1}+x_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
.4 \\
.6
\end{array}\right]=\left[\begin{array}{l}
2 / 5 \\
3 / 5
\end{array}\right]=\mathbf{q} \tag{25}
\end{align*}
$$

5. Orthogonal Diagonalization and Spectral Decomposition

Recall that if $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ then their inner-product is defined to be $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\mathrm{H}} \mathbf{y}=\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{y}$. Also, in this case, the 'length' of the vector is taken to be $|\mathbf{x}|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.
5.1. Self-Adjointness. Show that \mathbf{A}_{5} is a self-adjoint matrix.

First note that $\mathbf{A}_{5}=\sigma_{y}$ from homework one. It was shown in this homework that $\mathbf{A}_{5}^{\mathrm{H}}=\mathbf{A}_{5}$.
5.2. Orthogonal Eigenvectors. Show that the eigenvectors of \mathbf{A}_{5} are orthogonal with respect to the inner-product defined above.

Vectors are orthogonal if their inner-product is zero. With our previous definition of inner-product, the calculation,

$$
\mathbf{x}_{\mp}^{\mathrm{H}} \mathbf{x}_{ \pm}=[\bar{i} \mp 1]\left[\begin{array}{r}
i \tag{26}\\
\mp 1
\end{array}\right]=[-i \pm 1]\left[\begin{array}{r}
i \\
\mp 1
\end{array}\right]=-i \cdot i+\mp 1 \cdot \pm 1=1-1=0,
$$

shows that the eigenvectors are orthogonal.
5.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix, construct an orthonormal basis for \mathbb{C}^{2}.

An orthonormal basis is an orthogonal basis where the basis vectors have all been scaled to have unit-length. Using our definition of inner-product to define a length we note,

$$
\begin{equation*}
\sqrt{\mathbf{x}_{\mp}^{\mathrm{H}} \mathbf{x}_{\mp}}=\sqrt{1+1}=\sqrt{2}, \tag{27}
\end{equation*}
$$

which implies that the normalized eigenvectors are, $\mathbf{x}_{\mp}=[i \sqrt{2} / 2 \quad \mp \sqrt{2} / 2]^{\mathrm{T}}$.
5.4. Orthogonal Diagonalization. Show that $\mathbf{U}^{\mathrm{H}}=\mathbf{U}^{-1}$, where \mathbf{U} is a matrix containing the normalized eigenvectors of \mathbf{A}_{5}.

We have seen from the previous problems that if you have enough eigenvectors then it is possible to find a diagonal decomposition for the matrix. Geometrically, this decomposition provides a natural coordinate system for which the solution to the associated linear problem is manifestly clear. This is a powerful result but it can be made stronger.

The general statement is,

- If a matrix is self-adjoint then it can always be diagonalized. ${ }^{8}$ Moreover, eigenvectors associated with different eigenvalues are orthogonal to one another and the resulting matrix can be constructed to have the property $\mathbf{P P}^{\mathrm{H}}=\mathbf{P}^{\mathrm{H}} \mathbf{P}=\mathbf{I} .^{9}$

Since \mathbf{A}_{5} is self-adjoint we an demonstrate this fact.

$$
\mathbf{U}=\left[\begin{array}{rr}
i \frac{\sqrt{2}}{2} & i \frac{\sqrt{2}}{2} \tag{28}\\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] \Longrightarrow \mathbf{U}^{\mathrm{H}}=\left[\begin{array}{rr}
-i \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
-i \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] \text { and } \mathbf{U U}^{\mathrm{H}}=\left[\begin{array}{rr}
\frac{1}{2}+\frac{1}{2} & 0 \\
0 & \frac{1}{2}+\frac{1}{2}
\end{array}\right]
$$

Thus, $\mathbf{A}_{5}=\mathbf{U D}_{5} \mathbf{U}^{\mathrm{H}}$ where the decomposition has been found without using row-reduction to find an inverse matrix!
5.5. Spectral Decomposition. Show that $\mathbf{A}_{5}=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}}$.

The previous result is quite powerful and can be used to derive other decompositions of the matrix \mathbf{A}_{5}. One such decomposition is called the spectral decomposition, which speaks to the action of \mathbf{A}_{5} as a transformation. Assuming the given decomposition we consider the transformation,

$$
\begin{align*}
\mathbf{A}_{5} \mathbf{y} & =\left(\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}}\right) \mathbf{y} \tag{29}\\
& =\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}} \mathbf{y}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}} \mathbf{y} \tag{30}\\
& =\lambda_{1}\left\langle\mathbf{x}_{1}, \mathbf{y}\right\rangle \mathbf{x}_{1}+\lambda_{2}\left\langle\mathbf{x}_{2}, \mathbf{y}\right\rangle \mathbf{x}_{2} \tag{31}
\end{align*}
$$

[^4]which implies that \mathbf{A}_{5} transforms the vector \mathbf{y} by projecting this vector onto each eigenvector, rescaling it by a factor of λ_{i} and then linearly combines the results. To demonstrate this decomposition we calculate the following outer-product,
\[

$$
\begin{align*}
\mathbf{x}_{\mp} \mathbf{x}_{\mp}^{\mathrm{H}} & =\left[\begin{array}{r}
i \frac{\sqrt{2}}{2} \\
\mp \frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{ll}
\bar{i} \sqrt{2} / 2 & \mp \sqrt{2} / 2
\end{array}\right] \tag{32}\\
& =\left[\begin{array}{r}
i \frac{\sqrt{2}}{2} \\
\mp \frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{ll}
-i \sqrt{2} / 2 & \mp \sqrt{2} / 2
\end{array}\right] \tag{33}\\
& =\left[\begin{array}{rr}
1 / 2 & \mp i / 2 \\
\pm i / 2 & 1 / 2
\end{array}\right] \tag{34}
\end{align*}
$$
\]

which gives,

$$
\mathbf{A}_{5}=1 \cdot\left[\begin{array}{rr}
1 / 2 & -i / 2 \tag{35}\\
i / 2 & 1 / 2
\end{array}\right]-1 \cdot\left[\begin{array}{rr}
1 / 2 & i / 2 \\
-i / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

[^0]: ${ }^{1}$ As a simple case consider every scaling of $\hat{\mathbf{i}}$ how many elements would be in this set?

[^1]: ${ }^{2}$ It is important to notice how the dimension of the null-space drives the previous statements. I did not draw or try to picture anything.

[^2]: ${ }^{3}$ Answer : There are no constants that allow for this to be true.
 ${ }^{4}$ The reason for this is that row-operations are linear combinations, $R_{i}=R_{i}+\alpha R_{j}$. Thus using the non-zero rows of any echelon form you can get back to the rows of the original matrix and all linear combinations for that matter.
 ${ }^{5}$ It is possible to take the corresponding rows from \mathbf{A} but dangerous. The reason why is that the rows of the echelon form may not correspond directly to the rows of the original matrix because of row-swaps. However, if you wanted to take the rows from \mathbf{A} and have kept track of your row-swaps then there shouldn't be a problem.

[^3]: ${ }^{6}$ This only works for two-by-two problems. In higher dimensions it is not possible to fix one variable and uniquely define the remaining variables.
 ${ }^{7}$ For real matrices, complex Eigenvalues and eigenvectors must occur in conjugate pairs.

[^4]: ${ }^{8}$ It can also be shown that its eigenvalues are always real. This is important to the theory of quantum mechanics where the eigenvalues are hypothetical measurements associated with a quantum system. It would be disconcerting if you stuck a thermometer into a quantum-turkey and it somehow read $3+2 i$. Yikes!
 ${ }^{9}$ If the eigenvectors from a shared eigenspace are not orthogonal then it is possible to orthogonalize them by the Gram-Schmidt process.

