MATH348-Advanced Engineering Mathematics

Homework: LA Part II-Solutions

INTRODUCTION TO VECTOR SPACES, EIGENPROBLEMS AND DIAGONALIZATION

Lecture Notes: N/A

Slides: N/A

Quote of Homework: Linear Alge	ebra Part II - Solutions	
Walk without rhythm, and it won't attract the worm. If you walk without rhythm, you never learn.		
	Norman Quentin Cook : Weapon of Choice (2000)	

1. Vocabulary of Vector Spaces

Given,

$$\mathbf{A}_{1} = \begin{bmatrix} 5 & 3\\ -4 & 7\\ 9 & -2 \end{bmatrix}, \quad \mathbf{b}_{1} = \begin{bmatrix} 22\\ 20\\ 15 \end{bmatrix},$$
$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ -1\\ -3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -5\\ 7\\ 8 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 1\\ 1\\ h \end{bmatrix},$$
$$\mathbf{w}_{1} = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \quad \mathbf{w}_{2} = \begin{bmatrix} -3\\ 9\\ -6 \end{bmatrix}, \quad \mathbf{w}_{3} = \begin{bmatrix} 5\\ -7\\ h \end{bmatrix},$$
$$\mathbf{x}_{1} = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}, \quad \mathbf{x}_{2} = \begin{bmatrix} 2\\ 1\\ 3 \end{bmatrix}, \quad \mathbf{x}_{3} = \begin{bmatrix} 4\\ 2\\ 6 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix},$$
$$\mathbf{A}_{2} = \begin{bmatrix} -8 & -2 & -9\\ 6 & 4 & 8\\ 4 & 0 & 4 \end{bmatrix}, \quad \mathbf{b}_{2} = \begin{bmatrix} 2\\ 1\\ -2 \end{bmatrix}.$$

Before we get into these problems we record the following row-reductions:

(1)
$$[\mathbf{A}_1 | \mathbf{b}_1] \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(2)
$$\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -5 & 1 \\ -1 & 7 & 1 \\ -3 & 8 & h \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 1 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 0 & 2h+20 & | & 0 \end{bmatrix}$$

(3)
$$\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3] = \begin{bmatrix} 1 & -3 & 5 \\ -3 & 9 & -7 \\ 2 & -6 & h \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & 8 \\ 0 & 0 & h - 10 \end{bmatrix}$$

(4)
$$[\mathbf{X}|\mathbf{y}] = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3|\mathbf{y}] = \begin{bmatrix} 1 & 2 & 4 & | & 3 \\ 0 & 1 & 2 & | & 1 \\ -1 & 3 & 6 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

(5)
$$[\mathbf{A}_2|\mathbf{b}_2] \sim \begin{bmatrix} -8 & -2 & -9 & 2\\ 0 & 20 & 10 & 20\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

1.1. Linear Combinations. Is \mathbf{b}_1 a linear combination of the columns of \mathbf{A}_1 ?

Recall the following equivalence for $\mathbf{A} \in \mathbb{R}^{m \times n}$,

(6)
$$\mathbf{A}\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{a}_i,$$

which says that the matrix product is the same as a linear combination of its columns. So, asking if a vector, **b**, is a linear combination of columns is also asking if $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution. Either way we study the pivot structure of $[\mathbf{A}|\mathbf{b}]$. Thus, from above we have that $\mathbf{A}_1\mathbf{x} = \mathbf{b}_1$ has no solution and therefore \mathbf{b}_1 cannot be written as a linear combination of the columns from \mathbf{A} .

1.2. Linear Dependence. Determine all values for h such that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ forms a linearly dependent set.

A set of *n*-many vectors, \mathbf{v}_i , forms a linearly independent set if and only if $c_i = 0$ for i = 1, 2, 3, ..., n is the only solution to $\sum_{i=1}^{n} c_i \mathbf{v}_i = \mathbf{0}$. This is equivalent to asking if $\mathbf{V}\mathbf{c} = \mathbf{0}$ has only the trivial solution, where \mathbf{V} is a matrix formed by the set of vectors. If a homogeneous system has the trivial solution then there must be a pivot for every variable. If we want the vectors to form a linearly **de**pendent set then we must have the existence of free variables. Thus, from above, we require h = -10.

1.3. Linear Independence. Determine all values for h such that $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ forms a linearly independent set.

We repeat the argument of 1.2 and now require a pivot for each variable. In this case we have no values of h such that $c_1 = c_2 = c_3 = 0$ is the only solution to $\sum_{i=1}^{3} c_i \mathbf{w}_i = 0$. Thus, the vectors ALWAYS form a linearly dependent set.

1.4. Spanning Sets. How many vectors are in $S = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3}$? How many vectors are in span(S)? Is $\mathbf{y} \in \text{span}(S)$?

This is all a question of language. The set S has three elements. However, the spanning set of S is the set of all linear combinations of the vectors in S. That is, the spanning set of S is every vector that takes the form, $\sum_{i=1}^{3} c_i \mathbf{x}_i$ for any $c_i \in \mathbb{R}$. This spanning set, by definition has infinitely many elements.¹ Finally, we ask if \mathbf{y} is in this spanning set, which is really asking if there are c_i 's such that \mathbf{y} can be written as $\sum_{i=1}^{3} c_i \mathbf{x}_i$. Again, this is the same as asking if $\mathbf{X}\mathbf{c} = \mathbf{y}$, which is addressed by understanding the solubility of $[\mathbf{X}|\mathbf{y}]$. From the previous row-reductions we see that this system has a solution, in fact is has many, and therefore $\mathbf{y} \in \text{span}(S)$.

1.5. Matrix Spaces. Is $\mathbf{b}_2 \in \text{Nul}(\mathbf{A}_2)$? Is $\mathbf{b}_2 \in \text{Col}(\mathbf{A}_2)$?

Recall that the null-space of a matrix is the set of all solutions to $\mathbf{Ax} = \mathbf{0}$. This space tells us about all the points in space the homogeneous linear equations simultaneously intersect. One way to determine if \mathbf{b}_2 is in the null-space of \mathbf{A}_2 is by solving the homogeneous equation and determining if \mathbf{b}_2 is one of these solutions. However, it pays to note that if \mathbf{b}_2 is in the null-space of \mathbf{A}_2 then $\mathbf{A}_2\mathbf{b}_2 = \mathbf{0}$. A quick check shows,

(7)
$$\mathbf{A}_{2}\mathbf{b}_{2} = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \mathbf{0}$$

The column space, on the other hand, is a little different. The column space is the set of all linear combinations of the columns of A_2 . This is also called the spanning set of the columns of A_2 . Thus, this question can be addressed in the same way as problem 1.1 or the last part of 1.4 and we have,

(8)
$$[\mathbf{A}_2|\mathbf{b}_2] \sim \begin{bmatrix} -8 & -2 & -9 & 2\\ 0 & 20 & 10 & 20\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The conclusion is that \mathbf{b}_2 is in both the null-space and column space of \mathbf{A}_2 . This is not generally true of a non-trivial vector. In fact, it is never true for rectangular coefficient data.

 $^{^1\}mathrm{As}$ a simple case consider every scaling of \hat{i} how many elements would be in this set?

Given,

$$\mathbf{A} = \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 9 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{bmatrix}$$

The following problems will require the use of an echelon form of \mathbf{A} . One such form is,

(9)
$$\mathbf{A} \sim \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ 0 & 0 & 3 & -1 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{B}.$$

2.1. Null Space. Determine a basis and the dimension of Nul(A).

The null-space of **A** is the set of all solutions to $\mathbf{A}\mathbf{x} = \mathbf{0}$. To find a basis for this space we must explicitly solve the homogeneous equation. Thus, from the echelon form **B** we have the following,

$$\begin{aligned} x_4 &= -3x_5 \\ x_3 &= (x_4 - x_5)/3 = (-3x_5 - x_5)/3 = -\frac{4}{3}x_5 \\ x_1 &= \frac{1}{2}(3x_2 - 6x_3 - 2x_4 - 5x_5) = \frac{1}{2}(3x_2 - 6(-\frac{4}{3}x_5) - 2(-3x_5) - 5x_5) = \\ &= \frac{1}{2}(3x_2 + 8x_5 + 6x_5 - 5x_5) = \frac{3}{2}x_2 + \frac{9}{2}x_5 \\ x_2 &\in \mathbb{R} \\ x_5 &\in \mathbb{R} \\ x_5 &\in \mathbb{R} \end{aligned}$$

$$\Rightarrow \mathbf{x} = x_2 \begin{bmatrix} 3/2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -9/2 \\ 0 \\ -4/3 \\ -3 \\ 1 \end{bmatrix} \quad x_2, x_5 \in \mathbb{R} \end{aligned}$$

Hence, the basis for $Nul(\mathbf{A})$ is

(10)
$$B_{null} = \left\{ \begin{bmatrix} 3/2\\ 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -9/2\\ 0\\ -4/3\\ -3\\ 1 \end{bmatrix} \right\}$$

and dim(Nul \mathbf{A}) = 2. The conclusion is that the five linear four-dimensional objects intersect at many points in \mathbb{R}^5 . The collection of points forms a two-dimensional subspace, which is spanned by the basis vectors. That is, the linear objects intersect forming a planer subspace of \mathbb{R}^5 .²

2.2. Column Space. Determine a basis and the dimension of Col(A).

The column-space is the set of all linear combinations of the columns of \mathbf{A} . We would like to know a basis for this space, which implies that we must somehow determine the columns of the \mathbf{A} matrix that contain unique directional information. That is, we must find the linearly independent columns of the \mathbf{A} matrix. This information has been made clear through the previous null-space problem. Recall that if a set of vectors is linearly independent then their corresponding homogeneous equation must only have the trivial solution. Since row-reduction does not change the solution to a homogeneous equation we have,

(11)
$$\mathbf{A}\mathbf{x} = \mathbf{0} \iff [\mathbf{A}|\mathbf{0}] \sim [\mathbf{B}|\mathbf{0}] \iff \mathbf{B}\mathbf{x} = \mathbf{0}.$$

So, we can see if the columns of **A** are linearly independent by considering the linear independence of the columns of **B**. Clearly, the previous problem shows that the columns of **B** are not linearly independent. However, it is also clear from **B** that the columns without pivots can be made using the columns with pivots, $\mathbf{b}_2 = -3/2\mathbf{b}_1$ and $\mathbf{b}_5 = 3\mathbf{b}_4 + 4/3\mathbf{b}_3 - (9/2)\mathbf{b}_1$. So, if we take only the pivot columns

²It is important to notice how the dimension of the null-space drives the previous statements. I did not draw or try to picture anything.

from **B** then we would loose the linearly dependent columns and their free-variables. Consequently, the only solution to $\mathbf{B}_{change} = \mathbf{0}$ would be the trivial solution, which implies the columns are linearly independent.

There is still a problem. While row-reduction did not change the dependence relation, it did change the actual vectors. That is, the column-space of **A** is different the the column-space of **B**. To see this consider the constants necessary for $\mathbf{a}_1 \stackrel{?}{=} c_1 \mathbf{b}_1 + c_2 \mathbf{b}_3 + c_3 \mathbf{b}_4$. ³ So, the conclusion is that we must take the linearly independent columns from **A** as told to us by **B**. Thus, a basis for the column space of **A** are the pivot columns of **A**,

(12)
$$B_{ColA} = \left\{ \begin{bmatrix} 2\\ -2\\ 4\\ -2 \end{bmatrix}, \begin{bmatrix} 6\\ -3\\ 9\\ 3 \end{bmatrix}, \begin{bmatrix} 2\\ -3\\ 5\\ -4 \end{bmatrix} \right\}$$

and $\dim(\text{Col}\mathbf{A}) = 3$. The dimension of the column-space is also known as the rank of \mathbf{A} . From this we see an example of the so-called rank-nullity theorem, which says that the dimension of the null-space and the dimension of the column-space must always add to be the total number of columns in the matrix. That is,

Rank
$$\mathbf{A} + \dim(\operatorname{Nul}(\mathbf{A}) = n, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}$$

2.3. Row Space. Determine a basis and the dimension of Row A. What is the Rank of A?

The row-space of a matrix is the set of all linear combinations of its rows. A basis can be found by taking only the linearly independent rows of the matrix, which can be clearly seen as the non-zero rows of any echelon form. While in the case of a column-space the columns must necessarily come from the original matrix, this is not a requirement for the row-space.⁴ Thus, a basis for the row-space of **A** is given by,

(13)
$$B_{RowA} = \begin{cases} [2 - 3625] \\ [003 - 11] \\ [00013] \end{cases}$$

Since these rows were chosen because of their pivots, the dimension of this space is always equal to the dimension of the column space and $\dim(\text{Row}\mathbf{A}) = \text{Rank } \mathbf{A} = 3$.⁵

3. Eigenvalues and Eigenvectors

Given,

$$\mathbf{A}_{1} = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}, \quad \mathbf{A}_{3} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{A}_{4} = \begin{bmatrix} .1 & .6 \\ .9 & .4 \end{bmatrix}, \quad \mathbf{A}_{5} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

3.1. Eigenproblems. Find all eigenvalues and eigenvectors of A_i for i = 1, 2, 3, 4, 5.

Recall that the associated eigenproblem for a square matrix $\mathbf{A}_{n \times n}$ is defined by $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ whose solution is found via the following auxiliary equations:

- Characteristic Polynomial : $det(\mathbf{A} \lambda \mathbf{I}) = 0$
- Associated Null-space : $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

For each of the previous matrices we have:

³Answer : There are no constants that allow for this to be true.

⁴The reason for this is that row-operations <u>are</u> linear combinations, $R_i = R_i + \alpha R_j$. Thus using the non-zero rows of any echelon form you can get back to the rows of the original matrix and all linear combinations for that matter.

⁵It is possible to take the corresponding rows from \mathbf{A} but dangerous. The reason why is that the rows of the echelon form may not correspond directly to the rows of the original matrix because of row-swaps. However, if you wanted to take the rows from \mathbf{A} and have kept track of your row-swaps then there shouldn't be a problem.

$$det(\mathbf{A}_1 - \lambda \mathbf{I}) = (4 - \lambda)(1 - \lambda)^2 + 2(1 - \lambda)$$
$$= (1 - \lambda)(\lambda^2 - 5\lambda + 6) = 0 \implies \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$$

 $\mathbf{5}$

Case $\lambda_1 = 1$:

$$\begin{bmatrix} \mathbf{A}_1 - \lambda_1 \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 1 & 0 \\ -2 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 1 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{3x_1 = -x_3} = \begin{bmatrix} 0 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

A basis for this eigenspace associated with $\lambda = 1$ is $B_{\lambda=1} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$

Case $\lambda_2 = 2$:

$$\begin{bmatrix} \mathbf{A}_1 - \lambda_2 \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 & 0 \\ -2 & -1 & 0 & 0 \\ -2 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 = -x_3/2 \\ x_2 = x_3 \\ x_3 \in \mathbb{R} \end{bmatrix} \approx \mathbf{x} = \begin{bmatrix} -1/2 \\ 1 \\ 1 \end{bmatrix} x_3$$

A basis for this eigenspace is $B_{\lambda=2} = \left\{ \begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix} \right\}$

Case $\lambda_3 = 3$:

$$\begin{bmatrix} \mathbf{A}_{1} - \lambda_{3} \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ -2 & -2 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow$$
$$x_{1} = -x_{3}$$
$$\Rightarrow \quad x_{2} = x_{3} \quad \Rightarrow \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} x_{3}$$
$$=_{3} = \left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

A basis for this eigenspace is $B_{\lambda=3} = \left\{ \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix} \right\}$

$$\det(\mathbf{A}_2 - \lambda \mathbf{I}) = (3 - \lambda)(1 - \lambda) - (-2) = \lambda^2 - 4\lambda + 5 \implies \lambda = \frac{-(-4) \pm \sqrt{16 - 4(1)(5)}}{2} = 2 \pm i$$

Case $\lambda = 2 \pm i$:

(14)

$$\begin{bmatrix} \mathbf{A}_2 - \lambda \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 3 - (2 \pm i) & 1 & \mathbf{0} \\ -2 & 1 - (2 \pm i) & \mathbf{0} \end{bmatrix} = \\ = \begin{bmatrix} 1 \mp i & 1 & \mathbf{0} \\ -2 & -1 \mp i & \mathbf{0} \end{bmatrix}.$$

Row-reduction with complex numbers is possible. However, it is easier to note that for a two-by-two system we can use either row, in this case the first,

$$(1 \mp i)x_1 + 1x_2 = 0 \iff (1 \mp i)x_1 = -x_2,$$

to define the ratio between x_1 and x_2 .⁶ That is, if $x_1 = -1$ then $x_2 = 1 \mp i$ and thus the eigenvectors, like the eigenvalues, come in complex conjugate pairs $\mathbf{x} = \begin{bmatrix} -1 & 1 \mp i \end{bmatrix}^T$.⁷

⁶This only works for two-by-two problems. In higher dimensions it is not possible to fix one variable and uniquely define the remaining variables. ⁷For real matrices, complex Eigenvalues and eigenvectors must occur in conjugate pairs.

$$\lambda_1 = 4$$
 (With algebraic multiplicity of 2),
 $\lambda_2 = 2$ (With algebraic multiplicity of 2).

Case $\lambda_1 = 4$:

6

 $\underline{\text{Case } \lambda = 2}:$

$$\begin{bmatrix} \mathbf{A}_{3} - \lambda_{2} \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_{1} = 0 \\ x_{2} = 0 \\ x_{3}, x_{4} \in \mathbb{R} \end{bmatrix} = x_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
A basis for this eigenspace is $B_{\lambda=2} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$

$$\det \left(\begin{bmatrix} .1 - \lambda & .6\\ .9 & .4 - \lambda \end{bmatrix} \right) = (.4 - \lambda)(.1 - \lambda) - .54 = \lambda^2 - .5\lambda - .54 + .04 = \lambda^2 - .5\lambda - .53 + .04 = \lambda^2 - .5\lambda - .5 \Rightarrow \lambda = \frac{-(-.5) \pm \sqrt{(-.5)^2 - 4(1)(-.5)}}{2(1)} = \frac{.5 \pm 1.5}{2} \Rightarrow \lambda_1 = 1, \ \lambda_2 = -.5 = 0$$

Case $\lambda_1 = 1$:

(15)

$$[\mathbf{A}_4 - \lambda_1 \mathbf{I} | \mathbf{0}] = \begin{bmatrix} -.9 & .6 & | & 0 \\ .9 & .6 & | & 0 \end{bmatrix} \sim \begin{bmatrix} -.9 & .6 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \implies \mathbf{x}_1 = \begin{bmatrix} 2/5 \\ 3/5 \end{bmatrix}$$

Case $\lambda_2 = -.5$:

(16)
$$\begin{bmatrix} \mathbf{A}_4 - \lambda_2 \mathbf{I} | \mathbf{0} \end{bmatrix} = \begin{bmatrix} .6 & .6 & 0 \\ .9 & .9 & 0 \end{bmatrix} \sim \begin{bmatrix} .6 & .6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(17)
$$\det(\mathbf{A}_5 - \lambda \mathbf{I}) = \lambda^2 - 1 = 0 \implies \lambda = \pm 1$$

 $\underline{\text{Case } \lambda = \pm 1}:$

(18)
$$[\mathbf{A}_5 - \lambda \mathbf{I} | \mathbf{0}] = \begin{bmatrix} \mp 1 & -i & | & 0 \\ i & \mp 1 & | & 0 \end{bmatrix} \implies \mp x_1 - ix_2 = 0 \iff \mp x_1 = ix_2 \implies \mathbf{x} = \begin{bmatrix} i \\ \mp 1 \end{bmatrix}$$

3.2. Diagonalization. Find all matrices associated with the diagonalization of A_i for i = 1, 2, 3, 4, 5.

For each of the matrices we must find **P**,**D** and **P**⁻¹ such that $\mathbf{A}_i = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ for i = 3, 4, 5. Recall:

If one finds n-many eigenvectors for an $n \times n$ matrix then it is possible to find a diagonal matrix *similar* to $\mathbf{A}_{n \times n}$. That is, if \mathbf{A} has n-many eigenvectors then \mathbf{A} has the following diagonal decomposition,

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$$

where **D** is a diagonal matrix whose elements are eigenvalues of **A** and **P** is an invertible matrix whose columns are the eigenvectors corresponding to the eigenvalue elements of **D**. For i = 3, 4, 5 we have the following.

(20)
$$[\mathbf{P}_{3}|\mathbf{I}] \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1/2 & 0 & 0 & 1 \end{bmatrix} = [\mathbf{I}|\mathbf{P}_{3}^{-1}], \text{ and } \mathbf{D}_{3} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

(21)
$$\mathbf{P}_{4} = \begin{bmatrix} 2/5 & 1\\ 3/5 & -1 \end{bmatrix} \implies \mathbf{P}_{4}^{-1} = \begin{bmatrix} 1 & 1\\ 3/5 & -2/5 \end{bmatrix}, \text{ and } \mathbf{D}_{4} = \begin{bmatrix} 1 & 0\\ 0 & -1/2 \end{bmatrix}$$

(22)
$$\mathbf{P}_{5} = \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix} \implies \mathbf{P}_{5}^{-1} = \frac{1}{2i} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} = \frac{i}{2} \begin{bmatrix} -1 & i \\ -1 & -i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -i & -1 \\ -i & 1 \end{bmatrix}, \text{ and } \mathbf{D}_{5} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

4. Regular Stochastic Matrices

For the *regular stochastic matrix* \mathbf{A}_4 , define its associated steady-state vector, \mathbf{q} , to be such that $\mathbf{A}_4\mathbf{q} = \mathbf{q}$.

4.1. Limits of Time Series. Show that $\lim_{n \to \infty} \mathbf{A}_4^n \mathbf{x} = \mathbf{q}$ where $\mathbf{x} \in \mathbb{R}^2$ such that $x_1 + x_2 = 1$.

First, we note that we have already found the steady-state vector \mathbf{q} since it is the eigenvector associated with $\lambda_1 = 1$. Now, the question is how to raise a matrix to an infinite power. Generally, it is unclear whether this processes converges and if it does, what it converges to. However, diagonalization offers us hope since,

(23)
$$\lim_{n \to \infty} \mathbf{A}^n = \lim_{n \to \infty} \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1} = \mathbf{P} \lim_{n \to \infty} \mathbf{D}^n \mathbf{P}^{-1},$$

where $[\mathbf{D}^n]_{ij} = d_{ii}^2 \delta_{ij}$. Though calculating \mathbf{A}^n is hard, calculating \mathbf{D}^n is easy and more importantly, limiting processes on matrices now reduce to limiting processes on scalars, which is well-understood. In this case we have,

(24)
$$\lim_{n \to \infty} \mathbf{A}_4^n \mathbf{x} = \lim_{n \to \infty} \mathbf{P}_4 \mathbf{D}_4^n \mathbf{P}_4^{-1} \mathbf{x} = \begin{bmatrix} 2/5 & 1\\ 3/5 & -1 \end{bmatrix} \begin{bmatrix} \lim_{n \to \infty} 1^n & 0\\ 0 & \lim_{n \to \infty} (-.5)^n \end{bmatrix} \begin{bmatrix} 1 & 1\\ 3/5 & -2/5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

(25)
$$= \begin{bmatrix} .4 & .4 \\ .6 & .6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} .4(x_1+x_2) \\ .6(x_1+x_2) \end{bmatrix} = \begin{bmatrix} .4 \\ .6 \end{bmatrix} = \begin{bmatrix} 2/5 \\ 3/5 \end{bmatrix} = \mathbf{q}.$$

5. ORTHOGONAL DIAGONALIZATION AND SPECTRAL DECOMPOSITION

Recall that if $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ then their inner-product is defined to be $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{H}} \mathbf{y} = \bar{\mathbf{x}}^{\mathsf{T}} \mathbf{y}$. Also, in this case, the 'length' of the vector is taken to be $|\mathbf{x}| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

5.1. Self-Adjointness. Show that A_5 is a self-adjoint matrix.

First note that $\mathbf{A}_5 = \sigma_y$ from homework one. It was shown in this homework that $\mathbf{A}_5^{\text{H}} = \mathbf{A}_5$.

5.2. Orthogonal Eigenvectors. Show that the eigenvectors of A_5 are orthogonal with respect to the inner-product defined above.

Vectors are orthogonal if their inner-product is zero. With our previous definition of inner-product, the calculation,

(26)
$$\mathbf{x}_{\mp}^{\mathrm{H}}\mathbf{x}_{\pm} = \begin{bmatrix} \bar{i} \\ \mp 1 \end{bmatrix} \begin{bmatrix} i \\ \pm 1 \end{bmatrix} = \begin{bmatrix} -i \\ \pm 1 \end{bmatrix} \begin{bmatrix} i \\ \pm 1 \end{bmatrix} = -i \cdot i + \mp 1 \cdot \pm 1 = 1 - 1 = 0,$$

shows that the eigenvectors are orthogonal.

5.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix, construct an *orthonormal basis* for \mathbb{C}^2 .

An orthonormal basis is an orthogonal basis where the basis vectors have all been scaled to have unit-length. Using our definition of inner-product to define a length we note,

(27)
$$\sqrt{\mathbf{x}_{\mp}^{\mathrm{H}}\mathbf{x}_{\mp}} = \sqrt{1+1} = \sqrt{2},$$

which implies that the normalized eigenvectors are, $\mathbf{x}_{\mp} = \begin{bmatrix} i\sqrt{2}/2 & \mp\sqrt{2}/2 \end{bmatrix}^{\mathrm{T}}$.

5.4. Orthogonal Diagonalization. Show that $\mathbf{U}^{H} = \mathbf{U}^{-1}$, where U is a matrix containing the normalized eigenvectors of \mathbf{A}_{5} .

We have seen from the previous problems that if you have enough eigenvectors then it is possible to find a diagonal decomposition for the matrix. Geometrically, this decomposition provides a natural coordinate system for which the solution to the associated linear problem is manifestly clear. This is a powerful result but it can be made stronger.

The general statement is,

• If a matrix is self-adjoint then it can always be diagonalized.⁸ Moreover, eigenvectors associated with different eigenvalues are orthogonal to one another and the resulting matrix can be constructed to have the property $\mathbf{PP}^{\text{H}} = \mathbf{P}^{\text{H}}\mathbf{P} = \mathbf{I}.^{9}$

Since A_5 is self-adjoint we an demonstrate this fact.

(28)
$$\mathbf{U} = \begin{bmatrix} i\frac{\sqrt{2}}{2} & i\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \implies \mathbf{U}^{\mathsf{H}} = \begin{bmatrix} -i\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -i\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \text{ and } \mathbf{U}\mathbf{U}^{\mathsf{H}} = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} & 0 \\ 0 & \frac{1}{2} + \frac{1}{2} \end{bmatrix}.$$

Thus, $\mathbf{A}_5 = \mathbf{U}\mathbf{D}_5\mathbf{U}^{H}$ where the decomposition has been found without using row-reduction to find an inverse matrix!

5.5. Spectral Decomposition. Show that $\mathbf{A}_5 = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathsf{H}} + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^{\mathsf{H}}$.

The previous result is quite powerful and can be used to derive other decompositions of the matrix \mathbf{A}_5 . One such decomposition is called the spectral decomposition, which speaks to the action of \mathbf{A}_5 as a transformation. Assuming the given decomposition we consider the transformation,

(29)
$$\mathbf{A}_{5}\mathbf{y} = \left(\lambda_{1}\mathbf{x}_{1}\mathbf{x}_{1}^{\mathsf{H}} + \lambda_{2}\mathbf{x}_{2}\mathbf{x}_{2}^{\mathsf{H}}\right)\mathbf{y}$$

$$= \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathrm{H}} \mathbf{y} + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^{\mathrm{H}} \mathbf{y}$$

$$= \lambda_1 \langle \mathbf{x}_1, \mathbf{y} \rangle \, \mathbf{x}_1 + \lambda_2 \langle \mathbf{x}_2, \mathbf{y} \rangle \, \mathbf{x}_2$$

⁸It can also be shown that its eigenvalues are always real. This is important to the theory of quantum mechanics where the eigenvalues are hypothetical measurements associated with a quantum system. It would be disconcerting if you stuck a thermometer into a quantum-turkey and it somehow read 3 + 2i. Yikes!

⁹If the eigenvectors from a shared eigenspace are not orthogonal then it is possible to orthogonalize them by the *Gram-Schmidt* process.

which implies that \mathbf{A}_5 transforms the vector \mathbf{y} by projecting this vector onto each eigenvector, rescaling it by a factor of λ_i and then linearly combines the results. To demonstrate this decomposition we calculate the following outer-product,

(32)
$$\mathbf{x}_{\mp}\mathbf{x}_{\mp}^{\mathrm{H}} = \begin{bmatrix} i\frac{\sqrt{2}}{2}\\ \mp\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} i\sqrt{2}/2 & \mp\sqrt{2}/2 \end{bmatrix}$$

(33)
$$= \begin{bmatrix} i\frac{\sqrt{2}}{2} \\ \mp\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -i\sqrt{2}/2 & \mp\sqrt{2}/2 \end{bmatrix}$$

(34)
$$= \begin{bmatrix} 1/2 & \mp i/2 \\ \pm i/2 & 1/2 \end{bmatrix},$$

which gives,

(35)
$$\mathbf{A}_{5} = 1 \cdot \begin{bmatrix} 1/2 & -i/2 \\ i/2 & 1/2 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$