
MATH348-Advanced Engineering Mathematics Homework: LA Part II-Solutions

Introduction to Vector Spaces, Eigenproblems and Diagonalization

Text: 7.4, 7.9, Lecture Notes: N/A Slides: N/A

Quote of Homework: Linear Algebra Part II - Solutions

Walk without rhythm, and it won’t attract the worm. If you walk without rhythm, you

never learn.

Norman Quentin Cook : Weapon of Choice (2000)

1. Vocabulary of Vector Spaces

Given,

A1 =

 5 3

−4 7

9 −2

 , b1 =

 22

20

15

 ,

v1 =

 1

−1

−3

 , v2 =

 −5

7

8

 , v3 =

 1

1

h

 ,

w1 =

 1

−3

2

 , w2 =

 −3

9

−6

 , w3 =

 5

−7

h

 ,

x1 =

 1

0

−1

 , x2 =

 2

1

3

 , x3 =

 4

2

6

 , y =

 3

1

2

 ,

A2 =

 −8 −2 −9

6 4 8

4 0 4

 , b2 =

 2

1

−2

 .
Before we get into these problems we record the following row-reductions:

[A1 |b1 ] ∼

 1 0 0

0 1 0

0 0 1

(1)

V = [v1,v2,v3] =

 1 −5 1

−1 7 1

−3 8 h

 ∼
 1 −5 1 0

0 2 2 0

0 0 2h+ 20 0

(2)

W = [w1,w2,w3] =

 1 −3 5

−3 9 −7

2 −6 h

 ∼
 1 −3 5

0 0 8

0 0 h− 10

(3)

[X|y] = [x1,x2,x3|y] =

 1 2 4 3

0 1 2 1

−1 3 6 2

 ∼
 1 0 0 1

0 1 2 1

0 0 0 0

(4)

[A2|b2] ∼

 −8 −2 −9 2

0 20 10 20

0 0 0 0

(5)

1
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1.1. Linear Combinations. Is b1 a linear combination of the columns of A1?

Recall the the following equivalence for A ∈ Rm×n,

Ax =

n∑
i=1

xiai,(6)

which says that the matrix product is the same as a linear combination of its columns. So, asking if a vector, b, is a linear combination

of columns is also asking if Ax = b has a solution. Either way we study the pivot structure of [A|b]. Thus, from above we have that

A1x = b1 has no solution and therefore b1 cannot be written as a linear combination of the columns from A.

1.2. Linear Dependence. Determine all values for h such that S = {v1,v2,v3} forms a linearly dependent set.

A set of n-many vectors, vi, forms a linearly independent set if and only if ci = 0 for i = 1, 2, 3, . . . , n is the only solution to

n∑
i=1

civi = 0.

This is equivalent to asking if Vc = 0 has only the trivial solution, where V is a matrix formed by the set of vectors. If a homogeneous

system has the trivial solution then there must be a pivot for every variable. If we want the vectors to form a linearly dependent set then

we must have the existence of free variables. Thus, from above, we require h = −10.

1.3. Linear Independence. Determine all values for h such that S = {w1,w2,w3} forms a linearly independent set.

We repeat the argument of 1.2 and now require a pivot for each variable. In this case we have no values of h such that c1 = c2 = c3 = 0 is

the only solution to

3∑
i=1

ciwi = 0. Thus, the vectors always form a linearly dependent set.

1.4. Spanning Sets. How many vectors are in S = {x1,x2,x3}? How many vectors are in span(S)? Is y ∈span(S)?

This is all a question of language. The set S has three elements. However, the spanning set of S is the set of all linear combinations of the

vectors in S. That is, the spanning set of S is every vector that takes the form,

3∑
i=1

cixi for any ci ∈ R. This spanning set, by definition

has infinitely many elements.1 Finally, we ask if y is in this spanning set, which is really asking if there are ci’s such that y can be written

as

3∑
i=1

cixi. Again, this is the same as asking if Xc = y, which is addressed by understanding the solubility of [X|y]. From the previous

row-reductions we see that this system has a solution, in fact is has many, and therefore y ∈ span(S).

1.5. Matrix Spaces. Is b2 ∈ Nul(A2)? Is b2 ∈ Col(A2)?

Recall that the null-space of a matrix is the set of all solutions to Ax = 0. This space tells us about all the points in space the homogeneous

linear equations simultaneously intersect. One way to determine if b2 is in the null-space of A2 is by solving the homogeneous equation

and determining if b2 is one of these solutions. However, it pays to note that if b2 is in the null-space of A2 then A2b2 = 0. A quick check

shows,

A2b2 =

 −8 −2 −9

6 4 8

4 0 4


 2

1

−2

 = 0.(7)

The column space, on the other hand, is a little different. The column space is the set of all linear combinations of the columns of A2. This

is also called the spanning set of the columns of A2. Thus, this question can be addressed in the same way as problem 1.1 or the last part

of 1.4 and we have,

[A2|b2] ∼

 −8 −2 −9 2

0 20 10 20

0 0 0 0

 .(8)

The conclusion is that b2 is in both the null-space and column space of A2. This is not generally true of a non-trivial vector. In fact, it is

never true for rectangular coefficient data.

1As a simple case consider every scaling of î how many elements would be in this set?
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2. The Spaces Defined by Linear Transformations

Given,

A =


2 −3 6 2 5

−2 3 −3 −3 −4

4 −6 9 5 9

−2 3 3 −4 1

 .
The following problems will require the use of an echelon form of A. One such form is,

A ∼


2 −3 6 2 5

0 0 3 −1 1

0 0 0 1 3

0 0 0 0 0

 = B.(9)

2.1. Null Space. Determine a basis and the dimension of Nul(A).

The null-space of A is the set of all solutions to Ax = 0. To find a basis for this space we must explicitly solve the homogeneous equation.

Thus, from the echelon form B we have the following,

x4 = −3x5

x3 = (x4 − x5)/3 = (−3x5 − x5)/3 = −4

3
x5

x1 =
1

2
(3x2 − 6x3 − 2x4 − 5x5) =

1

2
(3x2 − 6(−4

3
x5)− 2(−3x5)− 5x5) =

=
1

2
(3x2 + 8x5 + 6x5 − 5x5) =

3

2
x2 +

9

2
x5

x2 ∈ R

x5 ∈ R

⇒ x = x2


3/2

1

0

0

0

+ x5


−9/2

0

−4/3

−3

1

 x2, x5 ∈ R

Hence, the basis for Nul(A) is

Bnull =




3/2

1

0

0

0

 ,

−9/2

0

−4/3

−3

1




(10)

and dim(Nul A) = 2. The conclusion is that the five linear four-dimensional objects intersect at many points in R5. The collection of points

forms a two-dimensional subspace, which is spanned by the basis vectors. That is, the linear objects intersect forming a planer subspace of

R5. 2

2.2. Column Space. Determine a basis and the dimension of Col(A).

The column-space is the set of all linear combinations of the columns of A. We would like to know a basis for this space, which implies that

we must somehow determine the columns of the A matrix that contain unique directional information. That is, we must find the linearly

independent columns of the A matrix. This information has been made clear through the previous null-space problem. Recall that if a set

of vectors is linearly independent then their corresponding homogeneous equation must only have the trivial solution. Since row-reduction

does not change the solution to a homogeneous equation we have,

Ax = 0 ⇐⇒ [A|0] ∼ [B|0] ⇐⇒ Bx = 0.(11)

So, we can see if the columns of A are linearly independent by considering the linear independence of the columns of B. Clearly, the

previous problem shows that the columns of B are not linearly independent. However, it is also clear from B that the columns without

pivots can be made using the columns with pivots, b2 = −3/2b1 and b5 = 3b4 + 4/3b3 − (9/2)b1. So, if we take only the pivot columns

2It is important to notice how the dimension of the null-space drives the previous statements. I did not draw or try to picture anything.
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from B then we would loose the linearly dependent columns and their free-variables. Consequently, the only solution to Bchange = 0 would

be the trivial solution, which implies the columns are linearly independent.

There is still a problem. While row-reduction did not change the dependence relation, it did change the actual vectors. That is, the

column-space of A is different the the column-space of B. To see this consider the constants neceesary for a1
?
= c1b1 + c2b3 + c3b4. 3 So,

the conclusion is that we must take the linearly independent columns from A as told to us by B. Thus, a basis for the column space of A

are the pivot columns of A,

BColA =




2

−2

4

−2

 ,


6

−3

9

3

 ,


2

−3

5

−4


(12)

and dim(ColA) = 3. The dimension of the column-space is also known as the rank of A. From this we see an example of the so-called

rank-nullity theorem, which says that the dimension of the null-space and the dimension of the column-space must always add to be the

total number of columns in the matrix. That is,

Rank A + dim(Nul(A) = n, where A ∈ Rm×n.

2.3. Row Space. Determine a basis and the dimension of Row A. What is the Rank of A?

The row-space of a matrix is the set of all linear combinations of its rows. A basis can be found by taking only the linearly independent

rows of the matrix, which can be clearly seen as the non-zero rows of any echelon form. While in the case of a column-space the columns

must necessarily come from the original matrix, this is not a requirement for the row-space.4 Thus, a basis for the row-space of A is given

by,

BRowA =


[2 − 3 6 2 5]

[0 0 3 − 1 1]

[0 0 0 1 3]

 .(13)

Since these rows were chosen because of their pivots, the dimension of this space is always equal to the dimension of the column space and

dim(RowA) = Rank A = 3. 5

3. Eigenvalues and Eigenvectors

Given,

A1 =

 4 0 1

−2 1 0

−2 0 1

 , A2 =

[
3 1

−2 1

]
, A3 =


4 0 0 0

0 4 0 0

0 0 2 0

1 0 0 2

 , A4 =

[
.1 .6

.9 .4

]
, A5 =

[
0 −i
i 0

]
,

3.1. Eigenproblems. Find all eigenvalues and eigenvectors of Ai for i = 1, 2, 3, 4, 5.

Recall that the associated eigenproblem for a square matrix An×n is defined by Ax = λx whose solution is found via the following

auxiliary equations:

• Characteristic Polynomial : det(A− λI) = 0

• Associated Null-space : (A− λI)x = 0

For each of the previous matrices we have:

3Answer : There are no constants that allow for this to be true.
4The reason for this is that row-operations are linear combinations, Ri = Ri + αRj . Thus using the non-zero rows of any echelon form you can get

back to the rows of the original matrix and all linear combinations for that matter.
5It is possible to take the corresponding rows from A but dangerous. The reason why is that the rows of the echelon form may not correspond

directly to the rows of the original matrix because of row-swaps. However, if you wanted to take the rows from A and have kept track of your row-swaps

then there shouldn’t be a problem.
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det(A1 − λI) = (4− λ)(1− λ)2 + 2(1− λ)

= (1− λ)(λ2 − 5λ+ 6) = 0 =⇒ λ1 = 1, λ2 = 2, λ3 = 3

Case λ1 = 1:

[
A1 − λ1I 0

]
=

 3 0 1 0

−2 0 0 0

−2 0 0 0

 ∼
 3 0 1 0

−2 0 0 0

0 0 0 0

⇒ 3x1 = −x3
−2x1 = 0

x2 ∈ R
⇒ x =

 0

x2

0

 = x2

 0

1

0



A basis for this eigenspace associated with λ = 1 is Bλ=1 =


 0

1

0




Case λ2 = 2:

[
A1 − λ2I 0

]
=

 2 0 1 0

−2 −1 0 0

−2 0 −1 0

 ∼
 2 0 1 0

−2 −1 0 0

0 0 0 0

 ∼

∼

 2 0 1 0

0 −1 1 0

0 0 0 0

⇒ x1 = −x3/2
x2 = x3

x3 ∈ R
⇒ x =

 −1/2

1

1

x3

A basis for this eigenspace is Bλ=2 =


 −1

2

2




Case λ3 = 3:

[
A1 − λ3I 0

]
=

 1 0 1 0

−2 −2 0 0

−2 0 −2 0

 ∼
 1 0 1 0

0 −2 2 0

0 0 0 0

⇒

⇒
x1 = −x3
x2 = x3

x3 ∈ R
⇒ x =

 −1

1

1

x3

A basis for this eigenspace is Bλ=3 =


 −1

1

1


.

det(A2 − λI) = (3− λ)(1− λ)− (−2) = λ2 − 4λ+ 5 =⇒ λ =
−(−4)±

√
16− 4(1)(5)

2
= 2± i

Case λ = 2± i: [
A2 − λI 0

]
=

[
3− (2± i) 1 0

−2 1− (2± i) 0

]
=

=

[
1∓ i 1 0

−2 −1∓ i 0

]
.

Row-reduction with complex numbers is possible. However, it is easier to note that for a two-by-two system we can use either row, in this

case the first,

(1∓ i)x1 + 1x2 = 0 ⇐⇒ (1∓ i)x1 = −x2,(14)

to define the ratio between x1 and x2.6 That is, if x1 = −1 then x2 = 1∓ i and thus the eigenvectors, like the eigenvalues, come in complex

conjugate pairs x = [−1 1∓ i]t.7

6This only works for two-by-two problems. In higher dimensions it is not possible to fix one variable and uniquely define the remaining variables.
7For real matrices, complex Eigenvalues and eigenvectors must occur in conjugate pairs.
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Since A3 is triangular we know the eigenvalues ofA3 are,

λ1 = 4 (With algebraic multiplicity of 2),

λ2 = 2 (With algebraic multiplicity of 2).

Case λ1 = 4:

[
A3 − λ1I 0

]
=


0 0 0 0 0

0 0 0 0 0

0 0 −2 0 0

1 0 0 −2 0

⇒
−2x3 = 0

x1 = 2x4

x2, x4 ∈ R
⇒ x =


2x4

x2

0

x4

 = x2


0

1

0

0

+ x4


2

0

0

1



Thus the basis for this eigenspace is Bλ=4 =




0

1

0

0

 ,


2

0

0

1


.

Case λ = 2:

[
A3 − λ2I 0

]
=


2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

1 0 0 0 0

⇒
x1 = 0

x2 = 0

x3, x4 ∈ R
⇒ x =


0

0

x3

x4

 = x3


0

0

1

0

+ x4


0

0

0

1



A basis for this eigenspace is Bλ=2 =




0

0

1

0

 ,


0

0

0

1




det

([
.1− λ .6

.9 .4− λ

])
= (.4− λ)(.1− λ)− .54 = λ2 − .5λ− .54 + .04 =

= λ2 − .5λ− .5⇒ λ =
−(−.5)±

√
(−.5)2 − 4(1)(−.5)

2(1)
=
.5± 1.5

2
⇒ λ1 = 1, λ2 = −.5

Case λ1 = 1:

[A4 − λ1I|0] =

[
−.9 .6 0

.9 .6 0

]
∼

[
−.9 .6 0

0 0 0

]
=⇒ x1 =

[
2/5

3/5

]
(15)

Case λ2 = −.5:

[A4 − λ2I|0] =

[
.6 .6 0

.9 .9 0

]
∼

[
.6 .6 0

0 0 0

]
=⇒ x2 =

[
1

−1

]
(16)

det(A5 − λI) = λ2 − 1 = 0 =⇒ λ = ±1(17)

Case λ = ±1:

[A5 − λI|0] =

[
∓1 −i 0

i ∓1 0

]
=⇒ ∓x1 − ix2 = 0 ⇐⇒ ∓x1 = ix2 =⇒ x =

[
i

∓1

]
(18)
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3.2. Diagonalization. Find all matrices associated with the diagonalization of Ai for i = 1, 2, 3, 4, 5.

For each of the matrices we must find P,D and P−1 such that Ai = PDP−1 for i = 3, 4, 5. Recall:

If one finds n−many eigenvectors for an n × n matrix then it is possible to find a diagonal matrix similar to An×n. That is, if A has

n−many eigenvectors then A has the following diagonal decomposition,

A = PDP−1,(19)

where D is a diagonal matrix whose elements are eigenvalues of A and P is an invertible matrix whose columns are the eigenvectors

corresponding to the eigenvalue elements of D. For i = 3, 4, 5 we have the following.

[P3|I] ∼


1 0 0 0 0 1 0 0

0 1 0 0 1/2 0 0 0

0 0 1 0 0 0 1 0

0 0 0 1 1/2 0 0 1

 =
[
I|P−1

3

]
, and D3 =


4 0 0 0

0 4 0 0

0 0 2 0

0 0 0 2

(20)

P4 =

[
2/5 1

3/5 −1

]
=⇒ P−1

4 =

[
1 1

3/5 −2/5

]
, and D4 =

[
1 0

0 −1/2

]
(21)

P5 =

[
i i

−1 1

]
=⇒ P−1

5 =
1

2i

[
1 −i
1 i

]
=
i

2

[
−1 i

−1 −i

]
=

1

2

[
−i −1

−i 1

]
, and D5 =

[
1 0

0 −1

]
(22)

4. Regular Stochastic Matrices

For the regular stochastic matrix A4, define its associated steady-state vector, q, to be such that A4q = q.

4.1. Limits of Time Series. Show that lim
n→∞

An
4x = q where x ∈ R2 such that x1 + x2 = 1.

First, we note that we have already found the steady-state vector q since it is the eigenvector associated with λ1 = 1. Now, the question

is how to raise a matrix to an infinite power. Generally, it is unclear whether this processes converges and if it does, what it converges to.

However, diagonalization offers us hope since,

lim
n→∞

An = lim
n→∞

PDnP−1 = P lim
n→∞

DnP−1,(23)

where [Dn]ij = d2iiδij . Though calculating An is hard, calculating Dn is easy and more importantly, limiting processes on matrices now

reduce to limiting processes on scalars, which is well-understood. In this case we have,

lim
n→∞

An
4x = lim

n→∞
P4D

n
4P
−1
4 x =

[
2/5 1

3/5 −1

] lim
n→∞

1n 0

0 lim
n→∞

(−.5)n

[ 1 1

3/5 −2/5

][
x1

x2

]
(24)

=

[
.4 .4

.6 .6

][
x1

x2

]
=

[
.4(x1 + x2)

.6(x1 + x2)

]
=

[
.4

.6

]
=

[
2/5

3/5

]
= q.(25)

5. Orthogonal Diagonalization and Spectral Decomposition

Recall that if x,y ∈ Cn then their inner-product is defined to be 〈x,y〉 = xhy = x̄ty. Also, in this case, the ‘length’ of the vector is taken

to be |x| =
√
〈x,x〉.

5.1. Self-Adjointness. Show that A5 is a self-adjoint matrix.

First note that A5 = σy from homework one. It was shown in this homework that Ah
5 = A5.

http://en.wikipedia.org/wiki/Similar_matrix
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5.2. Orthogonal Eigenvectors. Show that the eigenvectors of A5 are orthogonal with respect to the inner-product defined above.

Vectors are orthogonal if their inner-product is zero. With our previous definition of inner-product, the calculation,

xh
∓x± = [̄i ∓ 1]

[
i

∓1

]
= [−i ± 1]

[
i

∓1

]
= −i · i+∓1 · ±1 = 1− 1 = 0,(26)

shows that the eigenvectors are orthogonal.

5.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix, con-

struct an orthonormal basis for C2.

An orthonormal basis is an orthogonal basis where the basis vectors have all been scaled to have unit-length. Using our definition of

inner-product to define a length we note, √
xh
∓x∓ =

√
1 + 1 =

√
2,(27)

which implies that the normalized eigenvectors are, x∓ = [i
√

2/2 ∓
√

2/2]t.

5.4. Orthogonal Diagonalization. Show that Uh = U−1, where U is a matrix containing the normalized eigenvectors of A5.

We have seen from the previous problems that if you have enough eigenvectors then it is possible to find a diagonal decomposition for the

matrix. Geometrically, this decomposition provides a natural coordinate system for which the solution to the associated linear problem is

manifestly clear. This is a powerful result but it can be made stronger.

The general statement is,

• If a matrix is self-adjoint then it can always be diagonalized.8 Moreover, eigenvectors associated with different eigenvalues are

orthogonal to one another and the resulting matrix can be constructed to have the property PPh = PhP = I.9

Since A5 is self-adjoint we an demonstrate this fact.

U =

[
i
√
2

2
i
√
2

2

−
√
2

2

√
2

2

]
=⇒ Uh =

[
−i
√
2
2
−
√
2

2

−i
√
2
2

√
2

2

]
and UUh =

[
1
2

+ 1
2

0

0 1
2

+ 1
2

]
.(28)

Thus, A5 = UD5U
h where the decomposition has been found without using row-reduction to find an inverse matrix!

5.5. Spectral Decomposition. Show that A5 = λ1x1x
h
1 + λ2x2x

h
2.

The previous result is quite powerful and can be used to derive other decompositions of the matrix A5. One such decomposition is called

the spectral decomposition, which speaks to the action of A5 as a transformation. Assuming the given decomposition we consider the

transformation,

A5y =
(
λ1x1x

h
1 + λ2x2x

h
2

)
y(29)

= λ1x1x
h
1y + λ2x2x

h
2y(30)

= λ1 〈x1,y〉x1 + λ2 〈x2,y〉x2(31)

8It can also be shown that its eigenvalues are always real. This is important to the theory of quantum mechanics where the eigenvalues are

hypothetical measurements associated with a quantum system. It would be disconcerting if you stuck a thermometer into a quantum-turkey and it

somehow read 3 + 2i. Yikes!
9If the eigenvectors from a shared eigenspace are not orthogonal then it is possible to orthogonalize them by the Gram-Schmidt process.

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Gram-Schmidt_process
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which implies that A5 transforms the vector y by projecting this vector onto each eigenvector, rescaling it by a factor of λi and then linearly

combines the results. To demonstrate this decomposition we calculate the following outer-product,

x∓x
h
∓ =

[
i
√

2
2

∓
√
2

2

] [̄
i
√

2/2 ∓
√

2/2
]

(32)

=

[
i
√
2

2

∓
√
2

2

] [
−i
√

2/2 ∓
√

2/2
]

(33)

=

[
1/2 ∓i/2
±i/2 1/2

]
,(34)

which gives,

A5 = 1 ·

[
1/2 −i/2
i/2 1/2

]
− 1 ·

[
1/2 i/2

−i/2 1/2

]
=

[
0 −i
i 0

]
.(35)
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