Homework 5, due Tuesday May 2

1. Let A, B and C be operators. Show that

$$
[A, B C]=B[A, C]+[A, B] C
$$

2. The trace of an operator is the sum of the diagonal elements of its representation matrix:

$$
\operatorname{Tr} A=\sum_{n} A_{n n}
$$

Show that $\operatorname{Tr} A B=\operatorname{Tr} B A$
3. Let $A(t)$ be a matrix that depends on time and B a constant matrix. Suppose that

$$
\frac{d A(t)}{d t}=A(t) B
$$

Show that $A(t)=A(0) \exp (B t)$. What is the solution of

$$
\frac{d A(t)}{d t}=B A(t) ?
$$

4. We showed in class that $\hat{N}(\hat{a}|n+1\rangle)=n(\hat{a}|n+1\rangle)$. Show that this implies that $\hat{a}|n+1\rangle=c|n\rangle$ where c is a constant. Similarly $\hat{a}^{\dagger}|n\rangle \propto$ $|n+1\rangle$.
5. Prove that $\hat{a}^{\dagger}|n\rangle=e^{i \alpha} \sqrt{n+1}|n+1\rangle$ where α is an arbitrary phase factor.
6. We might as well take the phase factor α to be zero. Then, assuming that the vectors $|n\rangle$ are normalized, show that $\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ and

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle .
$$

