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Beginning Quote of Lecture 15

So now, less than five years later, you can go up on a steep hill in Las Vegas and look

west, and with the right kind of eyes you can almost see the high water mark – that place

where the wave finally broke and rolled back.

Hunter S. Thompson : Fear and Loathing in Las Vegas (1972)

1. Introduction

We finish our study of PDE with the wave equation,

∂2u

∂t2
= c24u+ F (x, y, z, t), c2 =

T

ρ
∈ R+,(1)

where T and ρ define the tension and density respectively. The unknown function u represents a displacement

from equilibrium position and the function F is assumed to be an external force applied to the system defined

at all space-time points in the PDEs domain. This equation is derived in the text within the context of

vibrations of ideally elastic material but can more generally be used to study ideal wave motion. 1 Formally,

this equation differs from the heat equation by a second derivative in time as opposed to a first derivative.

We will see in the following that being second-order in time will allow for time-oscillations and make these

solutions quite different in character that solutions to the heat equation. 2

1This equation, in fact, manifests in the study of Maxwell’s equations from electromagnetic theory as well Einstein’s

equation on a vacuum background.
2This is similar to what you found in ODEs. You might remember that solutions to y′ = ay were either exponen-

tially growing or decaying in time. It wasn’t until you introduced a second derivative in time that oscillatory solutions

were found. Moreover, this wouldn’t have even been noticed if wasn’t for Euler’s identity.

1
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2. Fourier Series Solutions

We begin with the study of the homogeneous wave equation on a finite domain and no external forcing. Or

mathematically,

∂2u

∂t2
= c2

∂2u

∂x2
,(2)

where x ∈ (0, L) and t ∈ (0,∞). This equation models a so-called standing wave from zero to L or maybe

more physically the vibrations of an elastic one-dimensional string. Just like the heat equation the interface

between this string and its environment must be given and so we establish the typical boundary conditions,

u(0, t) = 0, u(L, t) = 0,(3)

which implies that the displacement from rest-position of the string at the endpoints is zero for all time.
3 So, we consider an ideally elastic 1D string with fixed endpoints, similar to maybe a guitar string, and

whose vibrations are initiated by,

u(x, 0) = f(x),(4)

ut(x, 0) = g(x),(5)

where f is the initial deformation of the string and g is the initial velocity of the string. 4 The equations

(2)-(5) constitutes a well-posed problem with (2)-(3) being the boundary value problem and (2)-(5) being

the initial value problem. To solve this problem we proceed in the same fashion as we did with the heat

equation and note the only changes will be to the order of the ODE on time. These changes to the previous

arguments give:

• Separation of Variables : Assume that u(x, t) = F (x)G(t) and using this reduce (2) to two ODEs

one on time and one on space.

G′′(t) + λc2G(t) = 0(6)

F ′′(x) + λF (x) = 0(7)

The spatial equation is known as a boundary value problem (BVP) and is new to most of us. There

will be infinitely many solutions to this problem and these solutions are nothing more than modes

of a Fourier series expansion of u.

• Solve ODEs : If we solve the time and space ODE’s we find that,

Gn(t) = Bn cos(
√
λnct) +B∗n sin(

√
λnct), where Bn, B

∗
n ∈ R, λn =

n2π2

L2
, n = 1, 2, 3, . . . ,(8)

F (x) = sin(
√
λnx),

√
λn =

nπ

L
, n = 1, 2, 3, . . .(9)

• Form the solution to the IVP via superpostion to get,

u(x, t) =

∞X
n=1

h
Bn cos(

√
λnct) +B∗n sin(

√
λnct)

i
sin(
√
λnx),(10)

where u(x, 0) = f(x) implies that Bn = 2
L

R L
0
f(x) sin(

√
λnx)dx and ut(x, 0) = g(x) implies that

B∗n = 2√
λnL

R L
0
f(x) sin(

√
λnx)dx.

The take home message now is that due to the second derivative in time the dynamics of the Fourier

modes have changed from decay to oscillation. So, the Fourier series on space takes care of whatever shape

we might like to write down and this shape is then given suitable time dynamics from the time-derivatives

in the PDE. If we upgrade this to multiple dimensions then the procedures are the same. That is, given,

∂2u

∂t2
= c2

„
∂2u

∂x2
+
∂2u

∂y2

«
, x ∈ (0, L1), y ∈ (0, L2), t ∈ (0,∞)(11)

u(0, y, t) = u(L1, y, t) = u(x, 0, t) = u(x, L2, t) = 0,(12)

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y),(13)

3In the case of ux(0, t) = ux(L, t) = 0 we imply that the string must be flat at the endpoints for all time but may

undergo displacements. In the case that ux(0, t) ∝ u(0, t) we specify that the slope at the endpoint is proportional to

the displacement from equilibrium. Again, like the heat equation, this would lead to boundary value problems that

cannot be dealt with by hand.
4It is very common to take g(x) = 0. That is, it is very common to initiate vibrations by only deforming the elastic

medium.
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we find a solution expressed by a double Fourier series one for the x-dimension and one for the y-dimension

and that the frequency of the time-dynamics will depend on both modes. That is,

u(x, y, t) =

∞X
n=1

∞X
m=1

h
Cnm cos(

√
λnmct) + C∗nm sin(

√
λnmct)

i
sin(
√
knx) sin(

√
pmx),(14)

where
√
kn = nπ/L1,

√
pm = mπ/L2 and

√
λnm =

√
kn + pm. This solution models the vibrations of a thin

rectangular membrane with fixed edges. What is more interesting is what happens to the solutions of the

PDE when you move to different geometries.

3. Non-Cartesian Geometries

Suppose you want to discuss the vibrations of a thin circular membrane of radius R with fixed edges. In

this case the boundary condition would be,

u = 0 for all x, y such that x2 + y2 = R2.(15)

These boundary conditions are awful and one should always choose a coordinate system that makes the

boundary conditions as easy to express as possible. In this case we choose polar coordinates,

x = r cos(θ), y = r sin(θ),(16)

r =
p
x2 + y2, tan(θ) =

y

x
,(17)

and our solution would then be u(r, θ, t) instead of u(x, y, t). The boundary condition, in this case, is simply

u(R, θ, t) = 0, but we now have introduced a problem. Our PDE (11) is still in Cartesian coordinates but

our boundary condition is not. To fix this problem we must ask what uxx and uyy are in the polar system,

which is a problem resolved by the multivariate chain rule. For the second derivative of u with respect to x

we find that,

uxx = (ux(r, θ, t))x(18)

= (urrx + uθθx)x(19)

= urxrx + urrxx + uθxθx + uθθxx(20)

= (urrrx + urθθx) rx + urrxx + (uθrrx + uθθθx) θx + uθθxx(21)

= urrr
2
x + urrxx + 2urθθxrx + uθθθ

2
x + uθθxx(22)

A similar result holds for uyy and from this we conclude that,5

uxx + uyy = urr(r
2
x + r2y) + ur(rxx + ryy) + urθ(θxrx + θyry) + uθθ(θ

2
x + θ2y) + uθ(θxx + θyy),(23)

where,

rx =
x

r
, ry =

y

r
, rxx =

1

r
− x2

r3
, ryy =

1

r
− y2

r3
(24)

θx = − y

r2
, θy =

x

r2
, θxx =

2xy

r4
, θyy = −θxx.(25)

Hence the two-dimensional Laplacian in polar coordinates is,

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ,(26)

and our problem statement is,

∂2u

∂t2
= c2

„
urr +

1

r
ur +

1

r2
uθθ

«
, r ∈ (0, R), θ ∈ (0, 2π], t ∈ (0,∞)(27)

u(R, θ, t) = 0,(28)

u(r, θ, 0) = f(r, θ), ut(r, θ, 0) = g(r, θ).(29)

From here there is still a lot of work that needs to be done. The good thing is that it has been done and

recorded for the ages. 6 What is important to note is that the spatial ODE that results from separation of

variables looks like,

r2W ′′ + rW ′ + (λr2 − n2)W = 0, n ∈ N.(30)

5To do this we tacitly assume that u is continuous in the r and θ variables so that urθ = uθr.
6See problems 24-29 from section 12.9 in the text page 586.
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This equation is called Bessel’s equation of order n and the solution to this problem is given by,7

W = Jn(
√
λr) = xn

∞X
m=0

(−1)m
“√

λr
”2m

22m+nm!(n+m)!
,(31)

which is called Bessel’s function of the first kind of order n. This function is an oscillatory function but its

most important feature is that it oscillates without period.8Thus the distance between its roots/nodes is not

fixed, which is unlike the sine/cosine functions found when we separated variables in Cartesian coordinates.

For this reason one can conclude that the vibrational modes of a circle are more complex than that of a

rectangle.

4. Characterizations of Solutions

Lastly, we seek to characterize solutions to the wave equation both on finite domains and infinite domains.

To this end we present three important properties of solutions to the wave equation:

(1) Solutions to the wave equation obey conservation of energy. To see this we note that the

energy associated with the vibrations of an ideally elastic medium can be written as,9

E =
1

2

Z
Rn

(u2
t + c2|∇u|2)dx.(32)

If we differentiate E with respect to time and the wave equation conserves energy then we should

get zero. Doing so we find,

dE

dt
=

d

dt

1

2

Z
Rn

(u2
t + c2|∇u|2)dx(33)

=

Z
Rn

(ututt + c2∇u · ∇ut)dx(34)

= integration by parts and arguments about boundary conditions(35)

=

Z
Rn

ut(utt − c2∇ · ∇u)dx.(36)

Noting that utt − c2∇ ·∇u = utt − c24u = 0, by rearrangement of the wave equation, implies that
dE
dt

= 0. Thus any phenomenon modeled by the wave equation must conserve energy.

(2) The fundamental vibrational mode of a standing wave is the most energetic. This is a

direct consequence of results from Fourier series. For a standing wave with fixed endpoints wave we

have the solution,10

u(x, t) =

∞X
n=1

Bn cos(
√
λnct) sin(

√
λnx).(37)

Going back to Fourier series we found that Fourier coefficients have the form, Bn ∝ n−α where

α ∈ N and thus |Bn+1| < |Bn| for all n. This implies that |B1| is the largest Fourier coefficient and

since the amplitude of the Fourier mode controls the energy of the Fourier mode the first mode is

the most energetic and for these reasons it is called fundamental. 11

(3) Traveling wave solutions of the wave equation propagate with finite speed. It can be

shown that the general solution to the wave equation in R1+1 can be written in the form,

(38) u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

Z x+ct

x−ct
v0(y)dy,

which expresses solutions to the wave equation as right and left traveling waves of speed c. If we

consider the propagation of electromagnetic waves modeled by the wave equation then c is the speed

of light. If we consider the propagation of acoustic waves in the air at sea level then c corresponds

7Noting that this equation is linear but has variable coefficients implies that we NEED to use power series methods

to solve this problem.
8This makes solving the boundary condition W (

√
λR) = 0 intractable by hand and requires numerical root

approximation techniques by applied to the series definition.
9Here I consider any arbitrary finite-dimension. In class we made concrete statements about the R1+1 case.
10For simplicity we have assumed that the vibrations are set into motion by an initial deformation with no initial

velocity. If this is not the case then we can make the same statement but it is not as clean.
11This is a name coming from acoustics, where one concludes that the first mode carries the majority of sound.
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to the mach number. The most important feature is that c <∞ and we conclude that all evolution

controlled by the wave equation has a finite speed of propagation.

5. Lecture Goals

Our goals with this material will be:

• Compare and contrast the physics of the heat and wave equations and the behaviors of their corre-

sponding solutions.

• Understand how the spatial complexity of the PDE changes when considering different domains.

6. Lecture Objectives

The objectives of these lessons will be:

• Solve the wave equation on bounded domains in both R and R2 by the use of Fourier series.

• Discuss the solution to the wave equation on a circular geometry and introduce Bessel functions.

• Characterize standing and traveling solutions of the wave equation.

End Quote of The Semester

You know that I care what happens to you, and I know that you care for me too. So I

don’t feel alone, or the weight of the stone, now that I’ve found somewhere safe to bury

my bone. And any fool knows a dog needs a home, a shelter from pigs on the wing.

Pink Floyd : Pigs on the Wing - Part 2 (1977)


