Approaches to practical calculations

- Theory/computation:
 - Solve Schroedinger equation, calculate dipole moment
 - Use Fermi's Golden rule to calculate transition rate
- Beam propagation:
 - Use cross-sections for absorption and stimulated emission to calculate exponential damping or growth of beam
- Rate equations
 - Einstein A and B coefficients
 - Set up equations for the populations of all participating energy levels
 - Couple these to equations for photons in beam

Wave propagation with absorption

• Consider light absorption from a thin slab

 $I_1 = I_0 - I_0 \alpha \, \Delta z$

• Generalize to an equation for arbitrary length:

$$I_1 - I_0 = \Delta I = -I_0 \alpha \Delta z \rightarrow \frac{dI}{dz} = -\alpha I$$
$$I(z) = I_0 e^{-\alpha z} \qquad \text{Beer's I aw}$$

 Absorption coefficient (units m⁻¹) is proportional to the number density of absorbers:

 $\alpha = N_1 \sigma$

- $-N_1$ = number density (m⁻³) of species in level 1
- $-\sigma$? Has units of m², = "cross-section"

Models for σ : hard and soft spheres

- Consider an collection of "black" spheres that absorb if struck by a photon.
- Cross-section for absorption is just the projected area of the sphere. $\sigma = \pi a^2$
- For an atom, the probability of absorption depends on how close the incident frequency is to resonance:

Example: absorption of pump light in Nd:YAG

 Nd³⁺ is a heavy ion with many possible transitions

 Pump to anywhere above the ⁴F_{3/2} level

Fig. 2.2. Energy level diagram of Nd: YAG. The solid line represents the major transition at 1064 nm, and the dashed lines are the transitions at 1319, 1338, and 946 nm.

Absorption spectrum of Nd³⁺:YAG

Optical density (OD) = -log₁₀[T]

Pump bands near 808nm

• Powerful laser diodes (LD) are available near 808nm


```
3mm thick Nd:YAG crystal
```

- What % is absorbed at the peak (α=11/cm)?
- What is the OD? = -log₁₀[T]
- If N_{Nd}=1.38x10²⁰/cm³ (1% atomic), what is the absorption crosssection?
- Note: LD output wavelength depends on temperature, so temperature must be set and stabilized in real systems.

Amplifiers: pumping and small-signal gain

- Absorption $I[z] = I_0 \exp[-N_0 \sigma_{12} z] = I_0 \exp[-\alpha z]$
- Gain $I[z] = I_0 \exp[N_{inv}\sigma_{21}z] = I_0 \exp[gz]$
 - What is the inversion density?
 - How to express it in terms of the pump distribution
 - How does gain depend on λ or ω ?
 - What happens when the inversion density is depleted?

Simple gain calculation

- Assume spatially uniform pump distribution $G_0 = \exp[N_{inv}\sigma_{21}L]$ Small-signal gain
- Available energy for extraction:

$$E_{stor} = N_{inv} A L h v_{21} \rightarrow N_{inv} = \frac{E_{stor}}{A L h v_{21}} \qquad A = a$$

$$G_0 = \exp\left[\frac{E_{stor}}{A}\frac{\sigma_{21}}{hv_{21}}\right]$$

- Energy fluence = energy per unit area
- Define:
 - "stored fluence"

- "saturation fluence"

$$\Gamma_{stor} = \frac{E_{stor}}{A}$$

 $\sigma_{_{21}}$

I_{sat}

$$_{0} = \exp\left[\frac{\Gamma_{stor}}{\Gamma_{sat}}\right]$$

('

Example: Ti:sapphire saturation fluence

Saturation fluence

$$\Gamma_{sat} = \frac{hv_{21}}{\sigma_{21}} \frac{J}{cm^2}$$

For Ti:sapphire:

- λ_{21} =800nm, hv₂₁ = 1.55eV = 2.48x10⁻¹⁹ J - σ_{21} = 2.8 x 10⁻¹⁹ cm²

 $\Gamma_{sat} = 0.85 \text{ J/cm}^2$ Use this in gain calculation: $G_0 = \exp\left[\frac{\Gamma_{stor}}{\Gamma_{sat}}\right]$ Saturation fluence varies with gain medium

Example: Ti:sapphire amplifier

• Pump laser has 10mJ per pulse, calculate spot size in crystal for $G_0 = 5$

$$G_0 = \exp\left[\frac{\Gamma_{stor}}{\Gamma_{sat}}\right] \qquad \Gamma_{sat} = 0.85 \text{ J/cm}^2$$

• For $G_0 = 5$ we can calculate the required stored fluence:

 $\Gamma_{stor} = \Gamma_{sat} \ln[G_0] = 1.37 \text{ J/cm}^2$

Incident fluence must be larger b/c of wavelength ratio

$$\frac{hv_p}{hv_L} = \frac{\lambda_L}{\lambda_p} = \frac{800nm}{532nm} \approx 1.5 \qquad \Gamma_{\rm inc} = (\lambda_L/\lambda_p) \ \Gamma_{\rm stor} = 2.06 \ {\rm J/cm^2}$$

• We have 10 mJ incident (assuming all is absorbed)

Total stored energy = 6.7 mJ A = 4.85 x 10^{-3} cm² w₀ = 390 µm

Tells us what size to focus the pump beam

"Small-signal" gain

- We calculated $G_0 = 5$: this is the "small-signal gain"
 - Energy of input pulse: $1 \mu J$ initial stored: 6.7 m J
 - Energy of output pulse: 5 µJ final stored: 6.696mJ
- What if we have more energy input?
 - Energy of input pulse: 1 mJ initial stored: 6.7mJ
 - Energy of output pulse: 5 mJ final stored: 2.7mJ
 - Energy of input pulse: 5 mJ initial stored: 6.7mJ
 - Energy of output pulse: 25 mJ final stored: -13.3mJ
- We will need to account for **saturation** of gain.