| Quote of Short Homework Four | |
| :---: | :---: | | For a moment I lose myself, wrapped up in the pleasures of the world. I've journeyed here |
| :--- |
| and there and back again but in the same old haunts I still find my friends |

1. Goals

The goal of this assignment is to review the language of linear combination. Though the algorithm of choice is row-reduction, we now concentrate on associating the pivots to the language. After this assignment the student should:

- Understand how the concepts of linear combination and independence relate to bases and dimension.

2. Objectives

To achieve the previous goals the student will meet the following objectives:

- Read section 7.4, 7.9 of the text book paying particular attention to pages 297, 300-301 and 323-325.
- Compute dependence relations for particular sets.
- Compute spans for particular sets.

3. Problems

Given,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \tag{1}\\
9 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

3.1. Row-Reduction. Find the row echelon form of the matrix \mathbf{V} whose columns are the given vectors.
3.2. Linear Independent Sets. Does $S_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ form a linearly independent set? What about the sets $S_{2}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, $S_{3}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}, S_{4}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}, S_{5}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$.
3.3. Spanning Sets. Does S_{1} span \mathbb{R}^{3} ? What about $S_{2}, S_{3}, S_{4}, S_{5}$? If you were going to span \mathbb{R}^{3} then which of these sets would you choose? ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Remark: This problem is meant to demonstrate a few reoccurring points in linear algebra. The idea is that we typically work problems backwards in the sense that you start with a space of vectors, say \mathbb{R}^{n}, and ask the question,

 - Given a 'vector-space' can we 'reach' every 'point' in the space.

 More importantly, how can we do this with a minimal set of vectors? In this problem the vector-space is \mathbb{R}^{3} and from calculus we know that we need only three linearly-independent vectors, typically $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$, to reach every point via linear combination (aka span the space), $\mathbf{x}=x_{1} \hat{\mathbf{i}}+x_{2} \hat{\mathbf{j}}+$ $x_{3} \hat{\mathbf{k}} \in \mathbb{R}^{3}$. Consequently, if we choose any four vectors they must be linearly-dependent, S_{1}, which means that some vectors point in redundant directions. However, that doesn't mean that we can pick any three vectors and still span the space, S_{5}. So, we have to make careful choice to take enough vectors to span the space but not so many that the set of vectors is linearly-dependent. When we have made this careful choice we have secretly constructed a coordinate system or basis for the space. This choice is not unique, S_{2}, S_{4}.

