Minimum pump threshold

 The threshold power and slope efficiency both depend on the amount of output coupling loss

$$P_{out} = I_s A_b \frac{\gamma_2}{2} \left(\frac{P_p}{P_{th}} - 1 \right) \qquad P_{th} = I_s A_p \frac{\gamma}{\eta_p} \frac{hv_p}{hv_{21}} \qquad \gamma = \gamma_i + \frac{1}{2}\gamma_1 + \frac{1}{2}\gamma_2$$

- Lower output coupling leads to low threshold power, but less is let out of the cavity
- Define P_{mth} = minimum threshold power, with **no** output coupling

$$P_{mth} = I_s A_p \frac{\gamma_i + \frac{1}{2}\gamma_1}{\eta_p} \frac{hv_p}{hv_{21}} \longrightarrow P_{th} = P_{mth} \left(1 + \frac{\frac{1}{2}\gamma_2}{\gamma_i + \frac{1}{2}\gamma_1} \right)$$

- Define ratio of pump power to minimum threshold pump power:

$$x_m = \frac{P}{P_{mth}}$$

Output power vs OC transmission

• Define a parameter S, which is the ratio of OC loss to other losses P_{th}^{4}

$$P_{th} = P_{mth} \left(1 + \frac{\frac{1}{2}\gamma_2}{\gamma_i + \frac{1}{2}\gamma_1} \right) \equiv P_{mth} (1+S)$$

$$- \text{ Now look at output power vs S}$$

$$P_{out} = I_s A_b \frac{\gamma_2}{2} \left(\frac{P_p}{P_{th}} - 1 \right)$$

$$= I_s A_b \frac{\gamma_2}{2} \left(\frac{P_p}{P_{th}} - 1 \right)$$

$$= I_s A_b \left(\frac{\gamma_2}{2} \left(\frac{P_p}{P_{th}} - 1 \right) \right)$$

$$= I_s A_b \left(\gamma_i + \frac{1}{2}\gamma_1 \right) S \left(\frac{x_m}{(1+S)} - 1 \right)$$

$$x_m = \frac{P}{P_{mth}}$$

Optimized OC transmission

- Output power maximizes:
 - Low OC transmission, no output
 - High OC transmission, high P_{th}
- Find OC for maximum:

- set
$$\partial_{S} P_{out}(S) = 0$$

 $S_{opt} = \sqrt{x_m} - 1$

Intracavity power decreases with greater output coupling

$$P_{\rm int} = P_{out} / \gamma_2$$

Intracavity power is always higher than output power

Example: HeNe laser

Laser parameters

Lamp pumping

Fig. 6.3. Spectral emission of a xenon flash tube (EG&G, model FX-47A) operated at high current densities. Lamp fill pressure is 0.4 atm. The spectrum at the two current densities can be approximated by blackbodies 7000 and 9400 K, respectively [6.1]

Account for:

- Efficiency of converting electrical to optical power
- spectral overlap efficiency

Improving spectral overlap

 Can sensitize material to absorb, then transfer to ions for better inversion density

Pump chambers

Account for pump transfer efficiency

Diode pumping

Pump at strong absorption line near 808nm

Diode pumping configurations

• Single emitters or arrays

Direct-diode pumped KLM lasers

Naumov et al, Opt Lett v29 1276 (2004)

Cr⁴⁺:YAG

8.3W pump, 10mW avg out65fs pulseDouble-sided, 2 wavelengthpumping

Cr³⁺:LiCAF

1.0W pump, 40mW avg out10fs pulsePolarization-multiplexed pumping

Challenges to diode-pumping Ti:sapphire

- Desire small pump mode volume
 - Efficiency
 - Soft-aperture for Kerr-lens modelocking
- Pump absorption efficiency
- Quantum defect

High-power blue laser diodes

- GaN based diodes
- Used commercially for projectors
- Facet: 15:1 aspect ratio
- Fast/slow axis divergence: ~3.5:1
- 1.2, 1.6, 2 watts/single emitter now available
- 445nm typical, some lot variation
- Small shift in output wavelength with temperature.

Cavity layout

Pump optics:

- Asphere + 3:1 cylindrical telescope
- Side-by-side beams

Laser cavity designed for low threshold

- 86mm ROC curved mirrors for smaller intracavity mode size
- 1% OC for higher intracavity power
- Green pump: 30mW mode-locked with 500mW pump power

Laser operation

1.8W to crystal, 60% absorption Average output power:

- 40mW optimized CW
- 32mW mode-locked

Contributions to KLM

- Soft aperture in vertical direction
- Uniform gain along optical axis (60% pump absorption)
- Re-imaging of CW and ML spots shows z-shift in waist location.
- Low-threshold operation for small mode size gives high discrimination

