274  Traffic Flow

per mile and there are u,7 miles, then p,u,t is the number of cars passing
the observer in ¢ hours. Thus the number of cars per hour which we have
called the traffic flow, g, is

g = Polto.

Although this has been derived from an oversimplified case, we will show
that this is a fundamental law, the

traffic flow = (traffic density)(velocity field).

If the traffic variables depend on x and ¢, i.e., q(x, 1), p(x, 1), u(x, ), then we
will still show that

q(x, Nv = EAX« HV:AX. . (59.1)

An easy way to show this is to consider the number of cars that pass x = x,
in a very small time At, i.e., between t, and ¢, + At. In that small time the
cars have not moved far and hence (if p and u are continuous functions of x
and ¢) u(x, t) and p(x, ¢) can be approximated by constants, their values at
x =X, and ¢t = t,. In a small time At, the cars that occupy a short space,
approximately u(x, t)At, will pass the observer, as shown in Fig. 59-3. The
number of cars passing is approximately u(x, 1)At p(x, t). The traffic flow is
given by equation 59.1. Thus the results for constant ¥ and p do not need
modification for nonuniform u(x, t) and p(x, f). Consequently, the three
fundamental traffic variables, density p(x, #), velocity u(x, #) and flow g(x, ?),
are related by equation 59.1.

Emc_.omo-u>vu3x§m3&m$3nmmnm-:m<m_m~=>~
uat hours.

EXERCISES

59.1. For traffic moving at 10 m.p.h. (16 k.p.h.) such that cars are one car length
behind each other, what is the traffic flow?

59.2. Suppose that at position x, the traffic flow is known, g(x,, ), and varies with
time. Calculate the number of cars that pass x,, between ¢ = 0 and ¢ = ¢,.
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59.3. Inan experiment the total number of cars that pass a position x, after ¢ = 0,
M(x,, t), is measured as a function of time. Assume this series of points has
been smoothed to make a continuous curve.

(a) Briefly explain why the curve M(xq, t) is increasing as ¢ increases.
(b) What is the traffic flow at t = 7? -

60. Conservation of
, the Number of Cars

In this section, we formulate a deterministic model for traffic flow. Suppose
that the density and the velocity field are known initially for a highway of
infinite length. Can wé predict the densities and velocities at future times?
For example, if a traffic light turns red and shortly later green, then can the
pattern of traffic be predicted ?

We can consider the two fundamental traffic variables to be p(x, f) and
u(x, t) (since ¢ = pu was demonstrated in the previous section). However,
suppose we knew the initial traffic density (p(x, 0)) and the traffic velocity
field for all time (#(x, ¢)). Then the motion of each car satisfies the following
first order differential equation:

9% _ u(x, ) with x(0) = x,.

dt

Solving this equation (which at least can be accomplished numerically using
a computer) would determine the position of each car at later times. Con-
sequently at later times, we could calculate the density (although this calcula-
tion may be difficult; it would involve deciding what measuring interval to
use). Thus, the traffic density at future times can be calculated knowing the
traffic velocity (and the initial density).

We want to determine how the density can be calculated easily if the
velocity is known (later we will solve problems in which the velocity also
isn’t known). By following each car we insisted that the number of cars stays
the same. However, the traffic variables density, velocity, and flow were
introduced so that we wouldn’t have to follow individual cars. Let us now
instead try to “conserve” cars, but do so using these traffic field variables.

On some interval of ‘roadway, between x = g and x = b, as shown in
Fig. 60-1, the number of cars N is the integral of the traffic density:

N = ._; pix, ) dx. (60-1)




