MATH 225 - Differential Equations May 15, 2008
Homework 3, Field 2008 Due: May 20, 2008

QUALITATIVE ANALYSIS - EXISTENCE AND UNIQUENESS - PHASE LINE

. Section 1.3 of the text, problems 8, 10, 15.

. Consider the following logistics models for population growth,

% _ fH(P):kP<1—§>—H (1)
%’ _ fa(p):kp(1—§>—ap (2)

where k, N, M, H, a are the growth rate, carrying capacity, minimum threshold, harvesting and harvesting rate
parameters respectively.

(a) For (1) let k= N =2 and H = 0.5. Using HPGSOLVER, with the domain ¢ € (—3,5) and y € (—1,5), to
plot the slope field and solutions associate the initial conditions (0,.25), (0,.5) (0,3) and discuss the long
term behavior for each solution.

(b) For (2) let k = N = 2 and o = 0.5. Using HPGSOLVER, with the domain ¢t € (-=3,5) and y € (—1,5),
to plot the slope field and solutions associate the initial conditions (0,.125), (0,.25) (0,5) and discuss the
long term behavior for each solution.

(¢) Compare these two harvesting models, which would you use to harvest a population where P cannot be
exactly known? What if you could always know exactly the population P, which would you use then?

1
. ; 2 T 2t +3
are solutions to d—gz = f(t,y). What can you conclude about the solution to d—‘:{ = f(t,y) where y(0) = 3 for all
teR?

. Assuming f satisfies the hypotheses of the Uniqueness Theorem and that 1 (t) = 4+t+3t? and yo(t)

d
. Given =1 = y(y — 2)(y — 4),

(a) Sketch the phase line and classify all equilibrium points.

(b) Next to your phase line, sketch the solutions satisfying the initial conditions y(0) = —1, y(0) = 1, y(0) = 3,
and y(0) = 5.

(c) Describe the long-term behavior of the solution that satisfies the initial condition y(0) = 1.

d
. Given d—i = sin(y?),

(a) Sketch the phase line and classify all equilibrium points. (You cannot sketch the entire phase line in this
case, but show at least 5 equilibrium points, including both positive and negative y-values.)

/3
(b) Next to your phase line, sketch the solutions satisfying the initial conditions y(0) = \/z ,and y(0) = %
(c) Describe the long-term behavior of the solution that satisfies the initial condition y(0) = g
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MATH225, Spring 2008 Name: SO lutrons
Worksheet 4 (1.6, 1.7, 1.8)

= /
For full credit, you must show all work and box answers. 4
, d
1. Given -(—i% =y(y — 2)(y — 4),
(a) Sketch the phase line and classify all equilibrium points. &
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(b) Next to your phase line, sketch the graphs of solutions satisfying the initial conditions y(0) =<1, y(0) = 1,

y(0) = 3, and y(0) = 5. Put your graphs on one pair of axes.
(¢) Describe the long-term behavior of the solution that satisfies the initial condition y(0) = 1.
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2. Given —cg = sin(y?),

(a) Sketch the phase line and classify all equilibrium points. (You cannot sketch the entire phase line in this case,
but show at least 5 equilibrium points, including both positive and negative y-values.)
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(b) Next to your phase line, sketch the graphs of solutions satisfying the initial conditions y(0) = /=, and

/3
y(0) = —; Put your graphs on one pair of axes.

T
(c) Describe the long-term behavior of the solution that satisfies the initial condition y(0) = 5
] Lk T - S Sisees &> .._(_._f.'_.fﬂ
o dy 2
3. For the one-parameter family P y° — ay + 4, ; e T

(a) Find the bifurcation value(s).
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(b) For each bifurcation value, draw phase lines for values of the parameter slightly smaller than, slightly larger . ©

than, and at the bifurcation value. Make sure to label your graph and classify any equilibrium points.
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