MATH 225 - Differential Equations
Homework 3, Field 2008

May 15, 2008
Due: May 20, 2008

Qualitative Analysis - Existence and Uniqueness - Phase Line

1. Section 1.3 of the text, problems $8,10,15$.
2. Consider the following logistics models for population growth,

$$
\begin{align*}
\frac{d P}{d t} & =f_{H}(P)=k P\left(1-\frac{P}{N}\right)-H \tag{1}\\
\frac{d P}{d t} & =f_{\alpha}(P)=k P\left(1-\frac{P}{N}\right)-\alpha P \tag{2}
\end{align*}
$$

where k, N, M, H, α are the growth rate, carrying capacity, minimum threshold, harvesting and harvesting rate parameters respectively.
(a) For (1) let $k=N=2$ and $H=0.5$. Using HPGSolver, with the domain $t \in(-3,5)$ and $y \in(-1,5)$, to plot the slope field and solutions associate the initial conditions $(0, .25),(0, .5)(0,3)$ and discuss the long term behavior for each solution.
(b) For (2) let $k=N=2$ and $\alpha=0.5$. Using HPGSolver, with the domain $t \in(-3,5)$ and $y \in(-1,5)$, to plot the slope field and solutions associate the initial conditions $(0, .125),(0, .25)(0,5)$ and discuss the long term behavior for each solution.
(c) Compare these two harvesting models, which would you use to harvest a population where P cannot be exactly known? What if you could always know exactly the population P, which would you use then?
3. Assuming f satisfies the hypotheses of the Uniqueness Theorem and that $y_{1}(t)=4+t+3 t^{2}$ and $y_{2}(t)=\frac{1}{t^{2}+2 t+3}$ are solutions to $\frac{d y}{d t}=f(t, y)$. What can you conclude about the solution to $\frac{d y}{d t}=f(t, y)$ where $y(0)=\frac{1}{2}$ for all $t \in \mathbb{R}$?
4. Given $\frac{d y}{d t}=y(y-2)(y-4)$,
(a) Sketch the phase line and classify all equilibrium points.
(b) Next to your phase line, sketch the solutions satisfying the initial conditions $y(0)=-1, y(0)=1, y(0)=3$, and $y(0)=5$.
(c) Describe the long-term behavior of the solution that satisfies the initial condition $y(0)=1$.
5. Given $\frac{d y}{d t}=\sin \left(y^{2}\right)$,
(a) Sketch the phase line and classify all equilibrium points. (You cannot sketch the entire phase line in this case, but show at least 5 equilibrium points, including both positive and negative y-values.)
(b) Next to your phase line, sketch the solutions satisfying the initial conditions $y(0)=\sqrt{\frac{\pi}{2}}$, and $y(0)=\sqrt{\frac{3 \pi}{2}}$.
(c) Describe the long-term behavior of the solution that satisfies the initial condition $y(0)=\sqrt{\frac{\pi}{2}}$.

15. (a) Does not depend on $y\left(\frac{d y}{d t}=f(t)\right)$

$$
\begin{array}{ll}
t=1, & \frac{d t}{d t}=0 \\
t=0, & \frac{d}{d t}>0 \\
(i v)
\end{array}
$$

(b) Does depend ont ty' $\left(\frac{d y}{d t}=f(t, y)\right)$

$$
\left.\prod^{y=1}\right]^{\frac{d y}{d t}=0} \text { for all } t
$$

(c) Does not depend on t. $\left(\frac{d y}{d z}=f(y)\right)$

$$
\begin{aligned}
& y=1, \\
& y=-1, \\
& \frac{d y}{d y}=0 \\
& y=0, \\
& \frac{d t}{d t}<0 \\
& (v i i)
\end{aligned}
$$

(d) Does depend on $t+7 \quad\left(\frac{d y}{d t}=f(t, y)\right)$ as $t \rightarrow \infty$. $\frac{1}{d t} \rightarrow \infty$ as $t \rightarrow-\infty$, $\frac{d}{d t} \rightarrow \infty$

4. If $y_{1}(t)=4+t+3 t^{2}$ and $y_{2}(t)=\frac{1}{\prime^{\prime}+3}$ are solutions to $\frac{d y}{d t}=f(t, y)$, what can you conclude about the solution . If $y_{1}(t)=4+t+3 t^{2}$ and $y_{2}(t)=\overline{t^{2}+2 t+3}$ are solutions to $\overline{d t}=f(t, y)$, what
to $\frac{d y}{d t}=f(t, y)$ where $y(0)=\frac{1}{2}$? Assume f satisfies the hypotheses of the Uniqueness Theorem, that is $f(t, y)$ and $\frac{\partial f}{\partial y}$

$$
\begin{array}{ll}
\text { are continuous functions in the entire ty-plane. } & y_{1}(0)=4, y_{2}(0)=\frac{1}{3} \\
y_{1}(t)=4+t+3 t^{2} \text { is continuous } & y_{1} \\
y_{2}(t)=\frac{1}{t^{2}+2 t+3} \text { is continuous } & y_{2}(0)<y(0)<y_{1}(0) \\
\left.\binom{t^{2}+2 t+3 \neq 0}{t=\frac{-2 \pm \sqrt{4-12}}{4}} \frac{-2 \pm \sqrt{-8}}{2}=-1 \pm \sqrt{2} 1\right) & \frac{y_{2}(t)<y(t)<y_{1}(t)}{t_{1}^{2}+2 t+3}<y(t)<4+t+3 t^{2}
\end{array} \begin{aligned}
& \text { since solutions } \\
& \text { exist } \\
& \text { ennigue, are they } \\
& \text { cannot cross. }
\end{aligned}
$$

MATH225, Spring 2008
Name: Solutions

Worksheet 4 (1.6, 1.7, 1.8)

For full credit, you must show all work and box answers.

1. Given $\frac{d y}{d t}=y(y-2)(y-4)$,
(a) Sketch the phase line and classify all equilibrium points.

(b) Next to your phase line, sketch the graphs of solutions satisfying the initial conditions $y(0) \geq-1, y(0)=1$, $y(0)=3$, and $y(0)=5$. Put your graphs on one pair of axes.
(c) Describe the long-term behavior of the solution that satisfies the initial condition $y(0)=1$.

$$
y \rightarrow 2 \text { as } t \rightarrow \infty, y \rightarrow 0 \text { as } t \rightarrow-\infty
$$

2. Given $\frac{d y}{d t}=\sin \left(y^{2}\right)$,
(a) Sketch the phase line and classify all equilibrium points. (You cannot sketch the entire phase line in this case, but show at least 5 equilibrium points, including both positive and negative y-values.)
$\sin \left(y^{2}\right)=0$
$y^{2}=0, \pi, 2 \pi, \ldots$
$y=0, \pm \sqrt{\pi}, \pm \sqrt{2 \pi}, \ldots$
$y= \pm \sqrt{k \pi}, k=0,1,2, \ldots$
$\frac{\text { Linearization } 7 \mathrm{hm}}{f(y)=\sin \left(y^{2}\right)}$
$f^{\prime}(y)=2 y \cos \left(y^{2}\right)$
$f^{\prime}(0)=0$?
$f^{\prime}(\sqrt{\pi})<0: \sin k, f^{\prime}(-\sqrt{\pi})>_{0}$: source
$f^{\prime}(\sqrt{2 \pi})>0$ source, $f^{\prime}(-\sqrt{2 \pi})<0: \sin k$
 $y(0)=\sqrt{\frac{3 \pi}{2}}$. Put your graphs on one pair of axes.
(c) Describe the long-term behavior of the solution that satisfies the initial condition $y(0)=\sqrt{\frac{\pi}{2}}$.

$$
y \rightarrow \sqrt{\pi} \text { as } t \rightarrow \infty, y \rightarrow 0 \text { as } t \rightarrow-\infty
$$

3. For the one-parameter family $\frac{d y}{d t}=y^{2}-a y+4, y \in \mathbb{R}$
(a) Find the bifurcation values).

$$
\begin{aligned}
& f_{a}(y)=y^{2}-a y+4 \\
& f_{a}^{\prime} a(y)=2 y-a=0 \\
& y=\frac{a}{2} \\
& f_{a}\left(\frac{a}{2}\right)=\frac{a^{2}}{4}-\frac{a^{2}}{2}+4=0, \quad \frac{a^{2}}{4}=4, \quad a^{2}=16, a= \pm 4
\end{aligned}
$$

"(Sec a bached for classification work.)
(b) For each bifurcation value, draw phase lines for values of the parameter slightly smaller than, slightly larger than, and at the bifurcation value. Make sure to label your graph and classify any equilibrium points.

