Tilted window: ray propagation

- Calculate phase shift caused by the insertion of the window into an interferometer.
- Ray optics:
- Add up optical path for each segment
- Subtract optical path w/o window

$$
\Delta d=n L_{A B}+L_{B C}-L_{A B^{\prime}}-L_{B^{\prime} C^{\prime}}
$$

$$
L_{A B}=\frac{L_{w}}{\cos \theta_{2}} \quad L_{A B^{\prime}}=\frac{L_{w}}{\cos \theta_{1}}
$$

$$
L_{B C}=L_{B^{\prime} C^{\prime}}+L_{B B^{\prime}} \sin \theta_{1}
$$

- Use Snell's Law to reduce to:
$\Delta d=n L_{w} \cos \theta_{2}-L_{w} \cos \theta_{1}$

Tilted window: wave propagation

- Write expression for tilted plane wave

$$
E(x, z)=E_{0} \exp \left[i\left(k_{x} x+k_{z} z\right)\right]=E_{0} \exp \left[i \frac{\omega}{c} n\left(x \sin \theta_{2}+z \cos \theta_{2}\right)\right]
$$

- Snell's Law: phase across surfaces is conserved

$$
k_{x} x=\frac{\omega}{c} n \sin \theta \quad \text { is constant }
$$

$$
\Delta \phi=\left(k_{2} \cos \theta_{2}\right) L_{w}-\left(k_{1} \cos \theta_{1}\right) L_{w}
$$

- This approach can be used to calculate phase of prism pairs and grating pairs

Multiple-beam interference:
 The Fabry-Perot Interferometer or Etalon

A Fabry-Perot interferometer is a pair of parallel surfaces that reflect beams back and forth. An etalon is a type of Fabry-Perot etalon, and is a piece of glass with parallel sides.
The transmitted wave is an infinite series of multiply reflected beams.

Linear systems approach to the FP

- As with any linear device, we can represent its action in either the temporal or frequency domain
- Frequency domain: $\mathrm{H}(\omega)=$ transfer function
- Time domain: $\mathrm{h}(\mathrm{t})=$ impulse response
- First we will start with the conventional approach:
- Incident monochromatic plane wave
- Calculate transmitted amplitude and phase for $\mathrm{H}(\omega)$
- Then we should be able to calculate impulse response:
$-h(t)=\mathrm{FT}^{-1}\{\mathrm{H}(\omega)\}$

Calculation of the FP frequency response

$r, t=$ reflection, transmission coefficients from air to glass $r^{\prime}, t^{\prime}=$ " " from glass to air $\delta=$ round-trip phase delay inside medium $=\mathrm{k}_{\mathbf{0}}\left(\mathbf{2 n L} \cos \boldsymbol{\theta}_{\mathrm{t}}\right)$

Transmitted wave:

$$
\delta(\omega)=\omega \frac{2 n L}{c} \cos \theta_{t}(\omega) \approx \omega \frac{2 L}{c} \cos \theta_{i} \quad \text { for } \mathrm{n}=1
$$

$$
E_{0 t}=t t^{\prime} e^{i \delta / 2} E_{0}\left(1+\left(r^{\prime}\right)^{2} e^{i \delta}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{3}+\ldots\right)
$$

Reflected wave:

$$
E_{0 r}=r E_{0}+t t^{\prime} r^{\prime} e^{i \delta} E_{0}+t t^{\prime} r^{\prime}\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2} E_{0}+\ldots
$$

Stokes relations for reflection and transmission

(a)
"Time reversal:"
Same amplitudes, reversed propagation direction

Notes:

- relations apply to angles connected by Snell's Law
- true for any polarization, but not TIR
- convention for which interface experiences a sign change can vary

Fabry-Perot transfer function

 Stokes' $r^{\prime}=-r$ relations $r^{\prime 2}=r^{2}$The transmitted wave field is:

$$
t t^{\prime}=1-r^{2}
$$

$$
\begin{aligned}
E_{0 t} & =t t^{\prime} e^{i \delta / 2} E_{0}\left(1+\left(r^{\prime}\right)^{2} e^{i \delta}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{3}+\ldots\right) \\
& =t t^{\prime} e^{i \delta / 2} E_{0}\left(1+r^{2} e^{i \delta}+\left(r^{2} e^{i \delta}\right)^{2}+\left(r^{2} e^{i \delta}\right)^{3}+\ldots\right)
\end{aligned}
$$

Perform sum over infinite series:

$$
x=r^{2} e^{i \delta} \quad E_{0 t}=t t^{\prime} e^{i \delta / 2} E_{0} \sum_{m=0}^{\infty}\left(r^{2} e^{i \delta}\right)^{m}=\left(1-r^{2}\right) e^{i \delta / 2} E_{0} \sum_{m=0}^{\infty} x^{m}
$$

$$
\text { For }|\mathrm{x}|<1: \quad \sum_{m=0}^{\infty} x^{m}=1+x+x^{2}+x^{3}+\cdots=(1-x)^{-1}
$$

$$
\Rightarrow E_{0 t}=E_{0} \frac{\left(1-r^{2}\right) e^{i \delta / 2}}{1-r^{2} e^{i \delta}}=E_{0}(\omega) \frac{\left(1-r^{2}\right) \exp \left[i \omega \frac{L}{c} \cos \theta_{i}\right]}{1-r^{2} \exp \left[i \omega \frac{2 L}{c} \cos \theta_{i}\right]} \equiv E_{0}(\omega) H(\omega)
$$

FP impulse response

- Simple case: $\mathrm{n}=1$, normal incidence

$$
H(\omega)=\frac{\left(1-r^{2}\right) \exp \left[i \omega \frac{L}{c} \cos \theta_{i}\right]}{1-r^{2} \exp \left[i \omega \frac{2 L}{c} \cos \theta_{i}\right]} \rightarrow \frac{1-r^{2}}{1-r^{2} \mathrm{e}^{i \omega T_{R r}}}
$$

Dropping common term:

$$
\begin{gathered}
e^{i \omega T_{R T} / 2} \\
T_{R T}=2 L / c
\end{gathered}
$$

- FT^{-1} to get impulse response

$$
\begin{aligned}
& H(\omega)=\frac{1-r^{2}}{1-r^{2} \mathrm{e}^{i \omega T_{R T}}=\left(1-r^{2}\right) \sum_{m=0}^{\infty}\left(r^{2} e^{i \delta}\right)^{m}} \\
& h(t)=F T^{-1}\{H(\omega)\}=\left(1-r^{2}\right) \sum_{m=0}^{\infty} r^{2 m} F T^{-1}\left\{e^{i m \omega T_{r r}}\right\} \\
& h(t)=\left(1-r^{2}\right) \sum_{m=0}^{\infty} r^{2 m} \delta\left(t-m \omega T_{R T}\right)
\end{aligned}
$$

High reflectivity limit

- When the reflectivity is high, very little is transmitted through the output on each reflection

$$
\begin{aligned}
& r^{2}=R \quad \text { Power reflectivity } \\
& R^{m}=(1-T)^{m} \approx(1-m T) \approx e^{-2 m \gamma}
\end{aligned}
$$

Logarithmic cavity loss (single pass)
$\gamma=-\ln T=-\ln (1-R)$

- We can represent this as a time dependent loss function:

$$
L(t)=e^{-t / \tau_{c}} \quad \text { Cavity lifetime: } \quad \tau_{c}=T_{R T} / 2 \gamma
$$

$$
h(t)=\left(1-r^{2}\right) \sum_{m=0}^{\infty} r^{2 m} \delta\left(t-m \omega T_{R T}\right) \rightarrow\left(1-r^{2}\right) \Theta(t) e^{-t / \tau_{c}} \operatorname{comb}\left(t / T_{R T}\right)
$$

Another calculation of the transfer function

- With this low cavity loss representation of the impulse response, FT to get to $H(\omega)$

$$
\begin{aligned}
& h(t)=\left(1-r^{2}\right) \Theta(t) e^{-t / \tau_{c}} \operatorname{comb}\left(t / T_{R T}\right)=\left(1-r^{2}\right) f(t) g(t) \\
& H(\omega)=F T\{h(t)\}=\left(1-r^{2}\right) \frac{1}{2 \pi} F(\omega) \otimes G(\omega) \\
& F(\omega)=\int_{0}^{\infty} e^{-t / \tau_{c}} e^{i \omega t} d t=\left.\frac{e^{-t / \tau_{c}+i \omega t}}{-1 / \tau_{c}+i \omega}\right|_{0} ^{\infty}=\frac{1}{1 / \tau_{c}-i \omega} \quad \text { Complex Lorentzian } \\
& G(\omega)=F T\left\{\operatorname{comb}\left(t / T_{R T}\right)\right\}=\frac{2 \pi}{T_{R T}} \operatorname{comb}\left(\frac{\omega}{2 \pi / T_{R T}}\right)
\end{aligned}
$$

Fabry-Perot power transmission

$$
E_{0 t}=E_{0} \frac{1-r^{2}}{1-r^{2} e^{i \delta}} e^{i \delta / 2}
$$

Power transmittance: $T \equiv\left|\frac{E_{0 t}}{E_{0}}\right|^{2}=\left|\frac{\left(1-r^{2}\right) e^{i \delta / 2}}{1-r^{2} e^{i \delta}}\right|^{2}=\frac{\left(1-r^{2}\right)^{2}}{\left(1-r^{2} e^{+i \delta}\right)\left(1-r^{2} e^{-i \delta}\right)}$
$=\left[\frac{\left(1-r^{2}\right)^{2}}{\left\{1+r^{4}-2 r^{2} \cos (\delta)\right\}}\right]=\left[\frac{\left(1-r^{2}\right)^{2}}{\left\{1+r^{4}-2 r^{2}\left[1-2 \sin ^{2}(\delta / 2)\right]\right\}}\right]=\left[\frac{\left(1-r^{2}\right)^{2}}{\left.\left\{1-2 r^{2}+r^{4}+4 r^{2} \sin ^{2}(\delta / 2)\right]\right\}}\right]$

Dividing numerator and denominator by $\left(1-r^{2}\right)^{2}$

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)} \quad \text { where: } \quad F=\left[\frac{2 r}{1-r^{2}}\right]^{2}
$$

Multiple-beam interference: simple limits

Reflected waves

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

Full transmission: $\sin ()=0, d=2 \pi m$

Minimum transmission: $\sin ()=1, d=2 \pi(m+1 / 2)$

wavelength, or angle

Etalon transmittance vs. thickness,

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

Transmission max: $\sin ()=0, d=2 \pi m$

$$
\begin{aligned}
\delta & =\frac{\omega}{c} 2 n L \cos \left[\theta_{t}\right] \\
& =2 \pi m
\end{aligned}
$$

At normal incidence:

$$
\lambda_{m}=\frac{2 n L}{m} \quad \text { or } \quad n L=m \frac{\lambda_{m}}{2}
$$

- The transmittance varies significantly with thickness or wavelength.
- We can also vary the incidence angle, which also affects δ.
- As the reflectance of each surface $\left(R=r^{2}\right)$ approaches 1 , the widths of the high-transmission regions become very narrow.

The Etalon Free Spectral Range

The Free Spectral Range is the wavelength range between transmission maxima.

$$
\begin{gathered}
\lambda_{\mathrm{FSR}}= \\
\text { Free Spectral } \\
\text { Range }
\end{gathered}
$$

For neighboring orders:

$$
\frac{4 \pi n L}{\lambda_{1}}-\frac{4 \pi n L}{\lambda_{2}}=2 \pi \Rightarrow \frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}=\frac{1}{2 n L}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}
$$

$$
\lambda_{2}-\lambda_{1}=\lambda_{F S R}
$$

$$
\lambda_{2} \lambda_{1} \approx \lambda^{2}
$$

$$
\lambda_{F S R} \approx \frac{\lambda^{2}}{2 n L}
$$

$$
\frac{\lambda_{F S R}}{\lambda}=\frac{\lambda}{2 n L}=\frac{v_{F S R}}{v}
$$

$$
V_{F S R} \approx \frac{c}{2 n L}
$$

Etalon Linewidth

The Linewidth $\delta\llcorner w$ is a transmittance peak's full-width-half-max (FWHM).

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

A maximum is where $\delta / 2 \approx m \pi+\delta^{\prime} / 2$ and $\sin ^{2}(\delta / 2) \approx \delta^{\prime} / 2$
Under these conditions (near resonance),

$$
T=\frac{1}{1+F \delta^{\prime 2} / 4}
$$

This is a Lorentzian profile, with FWHM at:

$$
\frac{F}{4}\left(\frac{\delta_{L W}}{2}\right)^{2}=1 \Rightarrow \delta_{L W} \approx 4 / \sqrt{F}
$$

This transmission linewidth corresponds to the minimum resolvable wavelength.

Etalon Finesse

The Finesse, \mathfrak{I}, is the ratio of the
Free Spectral Range and the Linewidth:

$$
\mathfrak{I} \equiv \frac{\delta_{F S R}}{\delta_{F W}}=\frac{2 \pi}{4 / \sqrt{F}}=\frac{\pi \sqrt{F}}{2} \quad \begin{aligned}
& \delta=2 \pi \text { corresponds } \\
& \text { to one FSR }
\end{aligned}
$$

Using: $\quad F=\left[\frac{2 r}{1-r^{2}}\right]^{2}$

$$
\mathfrak{I}=\frac{\pi}{1-r^{2}} \quad \text { taking } r \approx 1
$$

The Finesse is the number of wavelengths the interferometer can resolve.

