
Tilted window: ray propagation 
•  Calculate phase shift caused by the insertion of the 

window into an interferometer.  
•  Ray optics:  

–  Add up optical path for each segment 
–  Subtract optical path w/o window 

–  Use Snell’s Law to reduce to: 
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Tilted window: wave propagation 
•  Write expression for tilted plane wave 

•  Snell’s Law: phase across surfaces is conserved 

•  This approach can be used 
    to calculate phase of prism  
    pairs and grating pairs 
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Multiple-beam interference:  
The Fabry-Perot Interferometer or Etalon 
A Fabry-Perot interferometer is a pair of parallel surfaces that reflect 
beams back and forth. An etalon is a type of Fabry-Perot etalon, and is 
a piece of glass with parallel sides. 
The transmitted wave is an infinite series of multiply reflected beams. 



Linear systems approach to the FP 
•  As with any linear device, we can represent its 

action in either the temporal or frequency domain 
–  Frequency domain: H(ω) =  transfer function 
–  Time domain: h(t) = impulse response 

•  First we will start with the conventional approach:  
–  Incident monochromatic plane wave 
–  Calculate transmitted amplitude and phase for H(ω) 

•  Then we should be able to calculate impulse 
response:  
–  h(t) = FT-1{ H(ω) }  



δ = round-trip phase delay inside medium = k0(2 n L cos θt) 

r, t = reflection, transmission coefficients from air to glass 
r’, t’ =  “   “         “          from glass to air 

Incident wave: E0	


Reflected  
wave: E0r	


Transmitted  
wave: E0t	
   t ′t eiδ /2 ′r( )2

eiδ E0

n n = 1 n = 1 

Calculation of the FP frequency response 

Transmitted wave: 

Reflected wave: 
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Stokes relations for reflection and transmission 

Eoit( ) ′r + Eoir( ) t = 0
∴ ′r = −r

Eoi = Eoir( )r + Eoit( ) ′t

∴ t ′t =1− r2

Notes: 
•  relations apply to angles connected by Snell’s Law 
•  true for any polarization, but not TIR  
•  convention for which interface experiences a sign change can vary 

“Time reversal:” 
Same amplitudes, 
reversed propagation 
direction 

= 



Fabry-Perot transfer function 
The transmitted wave field is: 

  

E0t = E0

1− r 2( )eiδ /2

1− r 2eiδ = E0 ω( )
1− r 2( )exp iω L

c
cosθ i

⎡
⎣⎢

⎤
⎦⎥

1− r 2 exp iω 2L
c

cosθ i

⎡
⎣⎢

⎤
⎦⎥

≡ E0 ω( )H ω( )

 
xm

m=0

∞

∑ = 1+ x + x2 + x3 +!= 1− x( )−1For |x|<1: 
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Stokes’ 
relations 
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Perform sum over infinite series: 
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FP impulse response 
•  Simple case: n = 1, normal incidence 

•  FT-1 to get impulse response 
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1− r 2( )exp iω L

c
cosθ i

⎡
⎣⎢

⎤
⎦⎥

1− r 2 exp iω 2L
c

cosθ i

⎡
⎣⎢

⎤
⎦⎥

→ 1− r 2

1− r 2 eiω TRT

Dropping common term: 
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∞
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High reflectivity limit 
•  When the reflectivity is high, very little is 

transmitted through the output on each reflection 

•  We can represent this as a time dependent loss 
function:  

r2 = R Power reflectivity 

Rm = 1−T( )m ≈ 1−mT( ) ≈ e−2mγ γ = − lnT = − ln 1− R( )

Logarithmic cavity loss 
(single pass) 

L t( ) = e− t /τ c Cavity lifetime:  τ c = TRT / 2γ

  
h t( ) = 1− r 2( ) r 2mδ t − mωTRT( )

m=0
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∑ → 1− r 2( )Θ(t)e− t /τ c comb t / TRT( )



Another calculation of the transfer 
function 

•  With this low cavity loss representation of the 
impulse response, FT to get to H(ω) 

  h t( ) = 1− r 2( )Θ(t)e− t /τ c comb t / TRT( ) = 1− r 2( ) f t( )g t( )
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Fabry-Perot power transmission 

Power transmittance: 
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Dividing numerator and denominator by 
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Multiple-beam interference:  simple limits 
Reflected waves 
	

Full transmission:   sin( ) = 0, d = 2 π m  

Minimum transmission: sin( ) = 1, d = 2 π (m+1/2)  

  
T = 1

1+ F sin2 δ / 2( )
1st reflection 

} internal 
reflections 

Destructive interference 
for reflected wave 

Constructive interference  
for reflected wave 



Etalon transmittance vs. thickness, 
wavelength, or angle 

•  The transmittance varies significantly with thickness or wavelength. 
•  We can also vary the incidence angle, which also affects δ.  
•  As the reflectance of each surface (R=r2) approaches 1, the widths 
of the high-transmission regions become very narrow. 

  
T = 1

1+ F sin2 δ / 2( )
Transmission max:   
sin( ) = 0, d = 2 π m  

δ = ω
c
2nL cos θt[ ]

= 2πm

At normal incidence: 

λm = 2nL
m

nL = m λm

2
or 



The Etalon Free Spectral Range 

λFSR = 
Free Spectral 

Range 

The Free Spectral Range is the wavelength range between 
transmission maxima. 
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For neighboring orders: 
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1/(round trip time) 



Etalon Linewidth 

The Linewidth δLW is a transmittance peak's full-width-half-max (FWHM).  
 
 
 
 
A maximum is where    and 
 
Under these conditions (near resonance),  
  
 
 
This is a Lorentzian profile, with FWHM at:  
                
 
 
This transmission linewidth corresponds to the minimum resolvable 
wavelength. 
 

  
T = 1

1+ F sin2 δ / 2( )

  

F
4

δ LW

2
⎛
⎝⎜

⎞
⎠⎟

2

= 1 ⇒ δ LW ≈ 4 / F

δ / 2 ≈ mπ + ′δ / 2 sin2 δ / 2( ) ≈ ′δ / 2
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Etalon Finesse 

The Finesse is the number of wavelengths the interferometer can resolve. 
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The Finesse,   , is the ratio of the  
Free Spectral Range and the Linewidth: 

    

ℑ

Using:  


