PosSTER DH9 AAPT MeeTIvG TAM. ((('77 AvAtem <A
3 .Ww. BelcHel, S, OLBERT + M. BesseTTS 5

Equation of Motion
We have a 3D dipole with dipole moment )L = W Z. It moves on the axis of a circular loop of radius a,

resistance R, inductance L, with inductive time constant L/R. It moves downward under the influence of
gravity. We constrain the motion to be along the z-axis, and the magnetic dipole moment to be parallel to
that axis. The equation of motion is
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where B; is the field due the current / in the ring (taken to be positive in the direction show on the sketch).
The expression for B is
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so that equation (3) is ‘
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An Equation for I from Faraday's Law

Faraday's Law is T _—
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where L is the inductance of the ring. If E = pJ, where p is the
resistivity of the ring and J is the current density, then é. E-dl= 4{ pJ-dl= I{ pdl/ A= IR, with

R= ‘j‘ pdl/ A where R is the resistance of the ring. So we have
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We now need to determine the magnetic flux through the ring due to the dipole field. To do this

we calculate the flux through a spherical cap of radius v a* +2°
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with an opening angle given 0 given by sin® =a/Va* +z° (this
is the same as the flux through the ring because V- B=0). The

flux through a spherical cap only involves the radial component of
the dipole field, given by
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Using this expression for the flux in (7), and assuming that w = M, is constant in time, yields
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Equations (5) and (8) are our coupled ordinary differential equations which determine the dynamics of the
situation when the magnet is falling toward the ring under the influence of gravity.




