
Phys 361 Homework 9  

 

 

1)  (based on Pollack and Stump 7.14) 

 

a)  Find the time constant, in seconds, for the decay of charge densities in germanium and in 

copper.  This is meant to be a simple plug & chug problem based on some material we looked 

at before spring break. 

 

b)  If the charges in some material take, say, 5 ns to approach rough equilibrium (so τ = 5 ns), 

any process that takes significantly longer than 5 ns will preserve the static nature of the 

charge distribution, and so you’ll be able to make various electrostatic approximations.  

Electromagnetic radiation comes in a variety of frequencies, and thus has oscillations with a 

variety of periods.  Figure out the radiation frequencies corresponding to the relaxation times 

for copper and germanium, and identify which parts of the EM spectrum they come from (X-

ray, radio, etc).  This sort of thing can really matter if you go to do materials science work 

with radiation – radiation that has periods well above the relaxation time for a material can 

interact quite differently with the material than radiation with periods well below it.   

 

 

2)  (based on Pollack and Stump 8.1) 

Back in Phys 200 we learned about the Hall effect.  When charges move along a conductor in 

the presence of a magnetic field perpendicular to the current direction, they’ll feel a force 

oriented across the material.  That leads to a so-called Hall voltage – a voltage that stretches 

across a material perpendicular to the voltage that drives the current.   

You can use this idea to make a probe for measuring magnetic fields.  The Hall probe shown 

below has some current I flowing across a ribbon of semiconductor.  The ribbon is placed in a 

magnetic field B, with B perpendicular to the plane of the ribbon.  In a steady state situation, 

there’s a voltage difference VH between the top and bottom edges of the ribbon, which is 

proportional to the magnitude of B.  Measuring VH thus lets you find out an unknown B. 

 

 

 

 

 

 

 



a)  Let’s suppose we have a probe with the dimensions shown in the picture, made of arsenic-

doped silicon.  The resistivity is 1.6 Ω ∙ cm, and the charge carrier density is � = 2 x 1015 per 

cm3.  The applied voltage is 3 V. What will be the Hall voltage across the 0.2 cm width if the 

field strength is 0.1 T? 

b)  Show that the sign of the Hall voltage depends on the effective sign of the charge carriers 

– that is, the Hall voltage flips depending on whether or not the current is made up of positive 

charges going to the left or negative charges going to the right. 

Note that we did basically this same problem in Phys 200 – it’s intended to be mostly review.  

Don’t feel the need to get too fancy, but there may be some old stuff you need to look up. 

 

3)  (based on Pollack and Stump 8.4.) 

This one is fun because we get to see a quadrupole actually doing stuff, and on top of that we 

get to see the effect of nonuniform B-fields.  Uniform B-fields are kind of boring because all 

they do is push charges around in little circles.  Nonuniform fields are much more useful, and 

what we’re doing (making a magnetic lens) starts to work towards the idea of magnetic 

confinement or a magnetic bottle. 

We can use a magnetic quadrupole field as a focusing field for a charged particle beam.  Take 

a magnet whose pole faces are as shown in the figure below: 

 

The shaded areas are the magnet itself, and the white area in the center is empty space.  There 

are two north poles and two south poles, and there’s a charged particle beam coming out of 

the page.  The pole faces are hyperbolas of the form 	
 = constant.  There’s some interval 

from z = 0 to z = L in which this quadrupole makes some nonzero field (outside of that region 

the field is zero).  In that region, the magnetic field is given by: 
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where b is a constant greater than zero.  Particles enter the field region from the negative z 

side with some velocity �
� = ���� .  They’ll feel a force according to ��
 × ��
.  

a)  Sketch the situation from the figure, and sketch the B-field lines that this quadrupole will 

produce. 

b)  Explain qualitatively why B produces focusing in the x direction and defocusing in the y 

direction, assuming the particles have positive charge. 

c)  Write the equations of motion for a beam particle of charge q and mass m, assuming the 

particle is subject only to magnetic forces stemming from the z component of its motion (it’ll 

pick up velocities in the x and y direction that add additional forces, but these will be 

comparatively small).  Solve for x as a function of z for z > 0, assuming 	 = 	� and �� = 0 

when z = 0.  Sketch a graph of x(z). 

d)  From the results of part c, it should be clear that there’s a value for the length L that would 

produce optimal focusing in x.  What is that length, in terms of other given quantities? 

Also, just for fun, you should totally watch these two videos of allowable charged particle 

trajectories in a nonuniform magnetic field.  They’re awesome, and they’re only nine seconds 

each: 

http://www.youtube.com/watch?v=FiwqNDJuGkI 

http://www.youtube.com/watch?v=Tvy7tHrbNpQ 

 

4)  (based on Pollack and Stump 8.6) 

The figure below shows what’s known as a sector mass spectrometer.  We ionize a sample, 

accelerate it through some voltage, and pass the sample through a velocity selector so that all 

incoming ions are traveling with the same speed.  Then we inject the ions into a chamber that 

has some magnetic field, which pushes particles around in semicircles whose radii depends 

on the charge-to-mass ratio of the ion.  The velocity selector features an electric field of 

magnitude E and a magnetic field with the same B as is present in the spectrometer.   

 



Show that the mass of some ion with charge e is given by: 

� =
 �!"

2$
 

Where s is the pictured distance – the distance between the particle input and its eventual 

impact on a sensor.  

This kind of mass spectrometer has largely (but not entirely) been replaced by the 

quadrupole-based one we worked with in field session, but sector mass specs still see use in 

applications that require high precision.  And note that we also did more-or-less this same 

problem in Phys 200, so don’t let it get too complicated.  

 

5)  Consider two perpendicular wires as shown.  There’s an infinite wire with current I1 

flowing from left to right, and a wire stub of length L with current I2 flowing towards the top 

of the page.  There’s a gap of length D between the two wires. 

 

 

 

 

 

 

a)  Calculate the force on wire 2 (the wire with current I2) due to wire 1.  If the everyday 

statement of Newton’s third law holds, what should be the force on wire 1 due to wire 2? 

b)  Calculate the magnetic field made by wire 2 at any arbitrary point on wire 1.  For clarity, 

let wire 2 be at 	 =  0 and find ��
�	� at points on wire 1 (x being the horizontal coordinate).  

Take the limit as 	 → 0 and make sure ��
 has the behavior it should have. 

c)  Find the magnetic force exerted on wire 1 by wire 2.   

d)  If you did (a) and (c) right, you’ll have discovered another apparent violation of Newton’s 

third law.  In class we resolved our first such violation by noting that Newton’s 3rd is really 

about conservation of momentum, and electromagnetic fields have momentum density that 

goes like $�
 × ��
, and that gave us some hope that we could patch everything up.  But in this 

situation at first glance there’s only a ��
 and no $�
, so that won’t help.  Or will it?  Resolve the 

contradiction as best you can (qualitatively at least).  Hint:  You can’t just punt by saying 

“There’s no such thing physically as a wire stub.”  There certainly can be, under the right 

circumstances.   
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