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3D wave propagation 

•  Note:  
–  All linear propagation effects are included in LHS: 

diffraction, interference, focusing… 
–  With plane waves transverse derivatives are zero.  

•  More general examples:  
–  Gaussian beams (including high-order) 
–  Waveguides 
–  Arbitrary propagation 
–  Can determine discrete solutions to linear equation 

(e.g. Gaussian modes, waveguide modes), then 
express fields in terms of those solutions. 
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General 3D plane wave solution 
•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 
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Grad and curl of 3D plane waves 
•  Simple trick: 

– For a plane wave, 

– Similarly, 

•  Consequence: since 
–  For a given k direction, E lies in a plane 
–  E.g. x and y linear polarization for a wave propagating 

in z direction   

∇⋅E = ∂x Ex + ∂y Ey + ∂z Ez

∇⋅E = i kxEx + kyEy + kzEz( ) = i k ⋅E( )

∇×E = i k ×E( )
∇⋅E = 0, k ⊥ E

Curved wavefronts 
•  Rays are directed normal to surfaces of constant phase 

–  These surfaces are the wavefronts 
–  Radius of curvature is approximately at the focal point 

•  Spherical waves are approximate solutions to the wave 
equation (away from r = 0) 
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Paraxial approximations 
•  For rays, paraxial = small angle to optical axis 

–  Ray slope: 

•  For spherical waves where power is directed forward: 
tanθ ≈θ
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⎣
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Expanding to 
1st order 

Wavefront = surface of constant phase 
For x, y >0, t must increase. 
Wave is diverging:   

k x
2 + y2

2z
=ω t

z is radius of curvature 

Diffractive propagation 
•  Huygens’ principle:  

–  Represent a plane wave as a superposition of source 
points emitting spherical waves 

•  Integral representation:  

E x, y, z( ) = i
λ

E ′x , ′y , ′z( )∫∫
exp −ik r − ′r⎡⎣ ⎤⎦

r − ′r
cosθd ′x d ′y

Field at 
input plane 

Spherical 
wavelet 

Inclination 
factor This is essentially a convolution of the 

complex input field with the spherical 
wavelets, which are the Green’s 
function for the wave equation 
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Maxwell's Equations to wave eqn 
•  Write Maxwell’s eqns for a linear medium 

•  Assume:  
–  Non-magnetic medium (µ = 0) 
–  Linear medium D = ε0 ε E 
–  Non-dispersive medium 
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Take the curl:"
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!
∇×

!
∇×E( ) = !∇ !∇⋅E( )− !∇⋅

!
∇( )E BAC-CAB vector ID 

Wave equation for spatially varying media 

•  Generalized wave equation 

–  If medium has a spatially-varying refractive index:  

 

–  Use above for P polarized light (E has component 
along gradient.   

–  For S polarization or no gradient, eliminate blue term. 
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∇
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!
∇⋅ εE( ) = ε

!
∇⋅E+ E ⋅

!
∇( )ε = 0

   
→
!
∇⋅E = − 1

ε
E ⋅
!
∇( )ε = − E ⋅

!
∇( )lnε

    

!
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!
∇ E ⋅

!
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c2 ε
∂2E
∂t2 = 0

If ε is time-
independent 
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Helmholtz (scalar) equation 
•  We will ignore vector components of field 

–  S polarization or no strong index gradients 
–  No boundary conditions (e.g. waveguides) 
–  Some limit on angular range, tight focusing 

–  Monochromatic (for now) 

–  Green’s function satisfies  

  
∇2U − ε

c2

∂2

∂t2 U = 0

  
∇2U + ε

c2 ω
2U = ∇2U + k 2U = 0

   ∇
2 + k 2( )G = −δ r − ′r( )

This is an equation for  
source-free wave propagation 

This adds a δ-fcn source 
G(r) is the wave emitted from 
this point source. 

Green’s theorem 
•  Mathematical basis for diffraction 
•  Start with divergence theorem 

–  Let   with ψ, χ scalar functions 

–  Now interchange  ψ, χ then subtract 

 
∇⋅A

V∫ dV = A ⋅nda
S!∫

A =ψ ∇χ

∇⋅A
V∫ dV = ∇⋅ ψ∇χ( )

V∫ dV = ψ∇2χ + ∇ψ( ) ⋅ ∇χ( )⎡⎣ ⎤⎦V∫ dV

 
A ⋅ n̂da

S!∫ = ψ∇χ( ) ⋅ n̂da
S!∫ = ψ ∂χ

∂n
da

S!∫ Gradient only in direction 
normal to surface 
 n points out from surface 

 
ψ ∂χ

∂n
− χ ∂ψ

∂n
⎛
⎝⎜

⎞
⎠⎟ da =S!∫ ψ∇2χ − χ∇2ψ⎡⎣ ⎤⎦V∫ dV

Let  
G = Green’s function 

ψ →U, χ →G
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Using Green’s function for wave equation 

•  For linear differential equation, put δ(x-x’) as source term. 
G(x) is effectively impulse response.  

•  Get answer for general inhomogeneous function by 
convolving G with source distribution 

•  Different choices of G are possible (assess accuracy) 
–  Kirchhoff: 
–  Ideal spherical wave 
–  Discontinuity at origin 
–  Let S’ = S + Sε , then take limit small ε 
–  This excludes source point, so inside V’   

G(P1) =
ei k r01

r01

  ∇
2 + k 2( )G = 0→∇2G = −k 2G

  ∇
2 + k 2( )U = 0→∇2U = −k 2U

Computing diffraction integral 
•  Green’s thm: 

 
–  For separate regions, S’ = S + Sε 

–  For a point in S’, 

–  If the point P1 is on Sε,    

 
U ∂G

∂n
−G ∂U

∂n
⎛
⎝⎜

⎞
⎠⎟ da =′S!∫ U∇2G −G∇2U⎡⎣ ⎤⎦V∫ dV = −Uk2G +Gk2U⎡⎣ ⎤⎦V∫ dV = 0

  ∇2G = −k 2G   ∇2U = −k 2U

 
− U ∂G

∂n
−G ∂U

∂n
⎛
⎝⎜

⎞
⎠⎟ ds =Sε!∫ U ∂G

∂n
−G ∂U

∂n
⎛
⎝⎜

⎞
⎠⎟ dsS!∫

G(P1) =
ei k r01

r01
→ ∂G(P1)

∂n
= cos n̂,r01( ) i k − 1

r01

⎛
⎝⎜

⎞
⎠⎟
ei k r01

r01
cos n̂,r01( ) = −1

G(P1) =
ei kε

ε
→ ∂G(P1)

∂n
= 1

ε
− i k⎛

⎝⎜
⎞
⎠⎟
ei kε

ε
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Helmholtz/Kirchhoff diffraction integral  
•  Take the limit of arbitrarily small ε 

•  Now put this into the Green’s function surface integral 

•  The field at P0 can be determined by integrating around 
any surface that surrounds it.  

 

lim
ε→0

U ∂G
∂n

−G ∂U
∂n

⎛
⎝⎜

⎞
⎠⎟ ds =Sε!∫ lim

ε→0
4πε 2 U P0( ) 1

ε
− i k⎛

⎝⎜
⎞
⎠⎟
ei kε

ε
− e

i kε

ε
∂U P0( )
∂n

⎡

⎣
⎢

⎤

⎦
⎥

= 4π lim
ε→0

U P0( ) 1− i kε( )ei kε − εei kε ∂U P0( )
∂n

⎡

⎣
⎢

⎤

⎦
⎥ = 4πU P0( )

 
U ∂G

∂n
−G ∂U

∂n
⎛
⎝⎜

⎞
⎠⎟ ds =Sε!∫ G ∂U

∂n
−U ∂G

∂n
⎛
⎝⎜

⎞
⎠⎟ dsS!∫

 
U P0( ) = 1

4π
ei k r01

r01
∂U
∂n

−U ∂
∂n

eik r01

r01

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
ds

S!∫

Diffraction by a plane screen 

 
U P0( ) = 1

4π
G ∂U

∂n
−U ∂G

∂n
⎛
⎝⎜

⎞
⎠⎟ dsS1+S2!∫

Intuitively, we don’t expect much 
contribution from S2 : assume only 
outgoing waves on this surface.  
 
Kirchhoff approach:  
Assume field is incident from left on S1  
-  U and dU/dn are the same as incident 
-  no contribution from opaque region 

outside opening Σ. 
-  Integrate only over Σ 
 
Trouble: this restriction ends up being 
unphysical. Leads to alternative choices 
of Green’s functions  

Very little distinction between 
approaches when r01>>λ 
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Diffraction formulas 
•  Kirchhoff 

–  For illumination of Σ by a point source at P2, 

•  Sommerfeld: avoid unphysical constraint on U 

→ ∂G(P1)
∂n

= cos n̂,r01( ) i k − 1
r01

⎛
⎝⎜

⎞
⎠⎟
ei k r01

r01
≈ ik cos n̂,r01( ) e

i k r01

r01
G P1( ) = e

i k r01

r01

r01>>λ 

 
U P0( ) = 1

4π
G ∂U

∂n
−U ∂G

∂n
⎛
⎝⎜

⎞
⎠⎟ dsΣ!∫ = 1

4π
∂U
∂n

− ikU cos n̂,r01( )⎛
⎝⎜

⎞
⎠⎟
ei k r01

r01
ds

Σ!∫

U P1( ) = A e
ik r21

r21

 
U P0( ) = A

iλ
cos n̂,r01( )− cos n̂,r21( )

2
⎛
⎝⎜

⎞
⎠⎟
ei k r01+r21( )

r01r21
ds

Σ!∫

 
U P0( ) = A

iλ
cos n̂,r01( ) e

i k r01+r21( )

r01r21
ds

Σ!∫
 
U P0( ) = − A

iλ
cos n̂,r21( ) e

i k r01+r21( )

r01r21
ds

Σ!∫

Obliquity factors modifying Huygens 
•  The diffraction equations are generated by mathematical 

constructs that help solve the wave equation 
–  Adapt 1st Sommerfeld equation:  

–  Extra added function: obliquity factor 
–  Kirchhoff 

–  Sommerfeld 1 
–  Sommerfeld 2 

•  If we had real dipole emitters:  

 
U P0( ) = A

iλ
ei k r21

r21
ei k r01

r01
cos n̂,r01( )ds

Σ!∫ → A
iλ

U P1( ) e
i k r01

r01
ψ θ( )ds

Σ!∫

ψ = 1
2 cos n̂,r01( )− cos n̂,r21( )( )→ 1

2 1+ cosθ( )
ψ = cos n̂,r01( )→ cosθ

ψ = −cos n̂,r21( )→1

→ plane wave incident

 
E ∼ e

i k r

r
cosθ But here, θ is measured from oscillator direction.  
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Constraints on diffraction integrals 
•  These integrals are very accurate in many practical 

situations but… 
–  R >> λ: the approach doesn’t work for “near-field” situations, e.g. 

NSOM, nanophotonics, RF or THz waves where the structures are 
close in size to the wavelength.  

–  Boundary conditions, contributions from screen surface: 
sometimes the physical nature of the screen can be important. 
Example: surface plasmon waves can be excited on metal 
surfaces, propagate through hole, then be re-radiated on other 
side. 

–  Metamaterials, photonic crystals… 

Use RF approaches to directly solve 
Maxwell equations in these cases.  
 

Paraxial, slowly-varying approximations 
•  Assume 

–   waves are forward-propagating: 

–  Refractive index is isotropic 

 
–  Fast oscillating carrier terms cancel (blue) 

•  Slowly-varying envelope: compare red terms 
–  Drop 2nd order deriv if 

–  This ignores: 
•  Changes in z as fast as the wavlength 
•  Counterpropagating waves 

∂2

∂z2
A + 2ik ∂

∂z
A − k2A +∇⊥

2A + n
2ω 0

2

c2
A = 0

E r,t( ) = A r( )ei k z−ω0 t( ) + c.c.

 

2π
λ
1
L
A 1

L2
A

2ik ∂
∂z
A +∇⊥

2A = 0
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Fresnel diffraction integral 
•  Fresnel approximation (near field) 

–  Expand the spherical wave in paraxial approximation 
(in exponential) 

–  Let denominator be 
–  Input field: 

  

u x, y, z( ) = i
λL

u ′x , ′y , ′z( )∫∫ exp −ik
x − ′x( )2 + y − ′y( )2

2L
⎡

⎣
⎢

⎤

⎦
⎥d ′x d ′y

r - ′r ~ z − ′z = L
E ′x , ′y , ′z( ) = u ′x , ′y , ′z( )e− ik z− ′z( )

 cosθ  1

u x, y, z( ) = i
λL
e
− ik x

2+y2

2L u ′x , ′y , ′z( )∫∫ e
− ik ′x 2+ ′y 2

2L e
− i k
L
x ′x +y ′y( )

d ′x d ′y

Fraunhofer diffraction integral 

•  In the “far field”, we approximate the sum of 
paraxial spherical waves as a sum of plane waves 
–  Assume field in input plane is confined to a radius a 
–  If    then we drop quadratic phases. 

–  Result: far field is a Fourier transform of the input field 
–  “spatial frequencies”   

u x, y, z( ) = i
λL

u ′x , ′y , ′z( )∫∫ exp −i kx
L

′x + ky
L

′y⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
d ′x d ′y

u x, y, z( ) = i
λL
e
− ik x

2+y2

2L u ′x , ′y , ′z( )∫∫ e
− ik ′x 2+ ′y 2

2L e
− i k
L
x ′x +y ′y( )

d ′x d ′y

ka2

2L
= πa2

λ
1
L
<<1

βx = k
x
L
= k sinθ x βy = k

y
L
= k sinθ y
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Example: sum of dipole radiators 
•  Add fields from 10 individual sources 

 Near field     far field 

Talbot fringes Diffraction grating 

High-density of radiators 
•  Combine 50 sources over same distance 

Fresnel zone shows shadow 
boundary, diffraction fringes 

Far field evolves more like a 
beam, with single-slit 
diffraction. 
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High density of radiators, Gaussian 
envelope 

•  Gaussian amplitude envelope eliminates 
diffraction fringes 

Beam smoothly spreads 
out with distance 


