3D wave propagation

2 2 2
VZE——Z%E—;—ZE Y ZE—”(C? %E 0
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. Note: Vi=0+0; ij;a,(ra,)+r—za;

— All linear propagation effects are included in LHS:
diffraction, interference, focusing...

— With plane waves transverse derivatives are zero.
* More general examples:

— Gaussian beams (including high-order)

— Waveguides

— Arbitrary propagation

— Can determine discrete solutions to linear equation
(e.g. Gaussian modes, waveguide modes), then
express fields in terms of those solutions.

General 3D plane wave solution

» Assume separable function
E(x,y,z,t)~ fl(x)]g(y)fs(z)g(t)

VB (20)= B B ) 2 B )= )

: X a9y’ z 2 o1
+ Solution takes the form:
E(x,y,2,) = Epe et = | et grior

E(x’y,z,t) — Eoel k.r—wt
— Now k-vector can point in arbitrary direction

e With this solution in W.E.:

nzw_2 44k =k -k Valid even in waveguides
> :

c and resonators
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Grad and curl of 3D plane waves

« Simple trick:
V-E=0d,E +0,E +0_E,
— For a plane wave,
V-E=i(kE, +kE, +kE.)=i(k-E)

— Similarly,
VXE=i(kxE)
« Consequence: since V.E=0, klE

— For a given k direction, E lies in a plane

— E.g. xand y linear polarization for a wave propagating
in z direction

Curved wavefronts

* Rays are directed normal to surfaces of constant phase
— These surfaces are the wavefronts
— Radius of curvature is approximately at the focal point

» Spherical waves are approximate solutions to the wave
equation (away from r = 0)

22 1. Scalar r 1
vE+2Y =0 Eoc—¢®)  +outward Toe—
¢ 4 - inward A
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Paraxial approximations

* For rays, paraxial = small angle to optical axis
— Ray slope: tan6 =6
* For spherical waves where power is directed forward:

et = exp[ik X+y'+7 ]

2 2 2 2 0
k«/x2+y2+zz=kz‘/1+x Y :kz[1+x2+2y ) Expanding to
Z Z
2 2

1st order

i(kr—wt ikz g + i i
el s ik exp[l(kx 5 Y _wtﬂ z is radius of curvature
Z

2 2
Wavefront = surface of constant phase & rry
For x, y >0, t must increase. %

Wave is diverging:

=t

Diffractive propagation

* Huygens’ principle:
— Represent a plane wave as a superposition of source
points emitting spherical waves

* Integral representation:

E(x,y,2)= i”E(x’,y’,z’) exp[—zic\rl— r] cosOdx’dy’
A Ir—r’|

Field at Spherical -1 B g
input plane wavelet |
Inclination
This is essentially a convolution of the ~ factor
complex input field with the spherical
wavelets, which are the Green’s
function for the wave equation




Maxwell’'s Equations to wave eqn

+  Write Maxwell’s eqns for a linear medium

V(sosE)zo ?xE=—u0u%—I;I

= = oE
V-(,uo,uH)zo VXH:SOSE

* Assume:
— Non-magnetic medium (p = 0)
— Linear mediumD =¢, € E
— Non-dispersive medium

Take the curl:

= = J ¢ d oE 1 0 OE
E = — —_— H:— — —_— === —_—

Vx(Vx ) uoath uoat(goe atj = at[s at]

Vx(VXE)=V(V-E)-(V-V)E BAC-CAB vector ID

Wave equation for spatially varying media

» Generalized wave equation

L =\, 19 dE) 1 JE If € is time-
V(V'E)_(V'V)E__CTE(EEJ__c_2€ of independent

— If medium has a spatially-varying refractive index:
V(eB) =2V -B+(B:V)e=0  5V-E=—(E-V)e=—(E-V)ine
~ _ . 2
V2E+V((E-V)1ng)—cize%=o

— Use above for P polarized light (E has component

along gradient.
— For S polarization or no gradient, eliminate blue term.
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Helmholtz (scalar) equation

* We will ignore vector components of field
— S polarization or no strong index gradients
— No boundary conditions (e.g. waveguides)
— Some limit on angular range, tight focusing

2
VZU—%%U:O
C

— Monochromatic (for now)

V2U+£w2U VU + kU =0 This is an equation for
e’ source-free wave propagation
— Green’s function satisfies
This adds a d-fcn source
2 2 _ ’
(V +k )G - —5(r— r ) G(r) is the wave emitted from
this point source.

Green’s theorem

* Mathematical basis for diffraction
+ Start with divergence theorem

J‘VV‘AdV=9SgA~nda

— Let A=y Vy with g, x scalar functions
JV-aav=] v-(Wx)av=| [vWx+(Vy)-(Vx)]av

. . oy Gradi C
A-nda=o (Wy) nda= ZA da radient only in direction
(ﬁs 955 (W) 9SSW on normal to surface

— Now interchange , x then subtract D (DS G EIm) SHTEES

Let ¥=>U,x—>G

oKX _,, o
955(!// F Zg)da ZJ.VI:‘I/VZZ -1V Jav G = Green’s function
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Using Green’s function for wave equation

» For linear differential equation, put 6(x-x’) as source term.
G(x) is effectively impulse response.

* Get answer for general inhomogeneous function by
convolving G with source distribution

+ Different choices of G are possible (assess accuracy)
~ Kirchhoff: G(py= "

Ideal spherical wave Tor

Discontinuity at origin

LetS’=S + S, , then take limit small €

This excludes source point, so inside V’

(V2+k2)G=O—>V2G=—k2G

(V2 +k2)U=0—>V2U=—k2U

Figure 35 Surface of integration.

Computing diffraction integral

* Green’s thm:

9G U .
gﬁv(Ua_n_Ga_n)da =[ [uV’G-6v'u]av =] [-UK'G+Gi*U]av =0

— For separate regions, S'=S + S

oG JdU oG U
—gﬁ&(UE—Ga)dS —qss[Ua— ngds

— Forapointin S,
ikry;

ikry
GPy=t— @ - cos(fl,r(,l)(ik—i} €
n

Toy o1 /) T

— If the point P; is on S, cos (1,1, )= -1

ike ike
e JdG(P, 1
G(Pl) = - - ﬁ = (— = lkj € Figure 3.5 Surface of integration.

on € £
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Helmholtz/Kirchhoff diffraction integral

» Take the limit of arbitrarily small €
ike ike
lim (Ua—G—Ga—U)ds=lim47rez U(}Lvo)(l—ik)e——e—M
e-0 JS, n on £-0 £ € I on
. . ike ike aU(PO)
=4xlim|U(R,)(1-ike)e** —ee'"* ——2 |=4nU(P,)

£—0 a n

* Now put this into the Green’s function surface integral

oG _dU oU dG
éﬁ/ (Ua—n— Ga—n)ds —@\(Ga—n—Ug)dS

1 eikrm aU a eikrm
viR)=4z ( a—n‘Ua—n( . D"
+ The field at P, can be determined by integrating around
any surface that surrounds it.

Diffraction by a plane screen

1 oU  JG
P)=— e § e
U( 0) 4 \S(G on v on )ds

Intuitively, we don’t expect much
contribution from S, : assume only
outgoing waves on this surface.

Kirchhoff approach:

Assume field is incident from left on S,

- U and dU/dn are the same as incident

- no contribution from opaque region
outside opening 2. U

- |ntegrate 0I"l|y over z Figure 3.6 Kirchhoff formulation of diffraction by a plane screen.

Trouble: this restriction ends up being Very little distinction between
unphysical. Leads to alternative choices approaches when r,;>>\
of Green’s functions
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Diffraction formulas

Kirchhoff o 5>
ikr ikr ikrg
01 1 01 n 01
G(R)="— —>aG(P)—cos(n rm)[zk——Je ~ ik cos(R,ry, ) <—
o1 on To1 ) Toi o1
oU G 1 oU ikror
U(P, G—-U ds=— — —ikU cos(n,r, ds
(5)= in ( on an) (an : (i 01)) Ty

ikry

e

— For illumination of = by a point source at P,, U(P)=A4
_£ Cos(ﬁ’r01)—COS(ﬁ,r2l) o Klortmar)
u(e)- 4 )

2 To1"a1

Sommerfeld: avoid unphysical constraint on U

T

ik(ry1+r3y) eik(ru|+’21)

A A R
U(R)= llg‘)cos(nrm)ids U(Po)z—qgﬁzcos(n,rﬂ)

r01r21 l r01r21

ds

Obliquity factors modifying Huygens

The diffraction equations are generated by mathematical
constructs that help solve the wave equation
— Adapt 15t Sommerfeld equation:

tkr2| Ikrm ikry

e

P) 1195 . cos(R,x,, )ds — 195 P) . v (0)ds

Extra added function: obliquity factor =~ — plane wave incident
Kirchhoff ¥ = %(cos(ﬁ,rm)— cos(f.r, )) > 4(1+cos)
Sommerfeld 1y =cos(f,r, ) — cosb

Sommerfeld2  y =—cos(fi,r, )1

If we had real dipole emitters:

ikr

E ~ cos®  But here, 8 is measured from oscillator direction.

r
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Constraints on diffraction integrals

* These integrals are very accurate in many practical
situations but...

— R >> A: the approach doesn’t work for “near-field” situations, e.g.
NSOM, nanophotonics, RF or THz waves where the structures are
close in size to the wavelength.

— Boundary conditions, contributions from screen surface:
sometimes the physical nature of the screen can be important.
Example: surface plasmon waves can be excited on metal
surfaces, propagate through hole, then be re-radiated on other
side.

— Metamaterials, photonic crystals...

Use RF approaches to directly solve
Maxwell equations in these cases.

Paraxial, slowly-varying approximations

* Assume
— waves are forward-propagating:
E(r./)=A(r)e™ ) +cc.
— Refractive index is isotropic

2 2 2
;—2A+2ikaiA—k2A+Vl2A+n D p=0
Z Z @

— Fast oscillating carrier terms cancel (blue)
+ Slowly-varying envelope: compare red terms
— Drop 2™ order deriv if 27 1 1

—=A>=A
AL L

— This ignores:
» Changes in z as fast as the wavlength 2ikiA +V,’A=0
» Counterpropagating waves dz
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Fresnel diffraction integral

* Fresnel approximation (near field)

— Expand the spherical wave in paraxial approximation
(in exponential)

— Let denominator be =L cosf=1

— Input field: E(x’,y’,z")=u(x’,y’,z")e ")

(x H X',y ,2 )ex —ik(x_x,)%r(y_y,)2 dx'dy’
Vs z XLy, Z p 2L y
. —i x +y —ik xx’+yy’
(X y, Z e e 2L J'J‘ r’yl Z, 2L ¢ L( yy)dx'dy’

Fraunhofer diffraction integral

X2+y2 .kX'2+y'2 E( :

u(x,y,z):ll_Le—ik 2L J.J. ( /’y/’zl) 2L e_lew,)dx'dy'

* In the “far field”, we approximate the sum of
paraxial spherical waves as a sum of plane waves
— Assume field in input plane is confined to a radius a
- If ka 7ta 1 ! then we drop quadratic phases.
2L AL

’ ’ ’ 3 kx ’ k ’ ’ ’
u(x,y,z)= )f_LJ.Ju(x Yz )exp[—l(fx +Zyy ﬂdx dy

— Result: far field is a Fourier transform of the input field

— “spatial frequencies” B. = k% —ksin6, B, = k%: ksin®,
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Example: sum of dipole radiators

» Add fields from 10 individual sources
Near field far field

0 5‘0 1(‘)0 I;O Z(l)O 2&]
Talbot fringes Diffraction grating

High-density of radiators

* Combine 50 sources over same distance

15 R s

10 - 1 1001

50

0 2 4 s 8 15 50 100 150 200 25_0

Fresnel zone shows shadow Far field evolves more like a

boundary, diffraction fringes beam, with single-slit
diffraction.
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High density of radiators, Gaussian
envelope

Gaussian amplitude envelope eliminates
diffraction fringes

n n n N
50 100 150 200

Beam smoothly spreads
out with distance
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