
MATH332-Linear Algebra Homework Three

Linear Transformations and Matrix Algebra

Text: 1.7-2.2 Section Overviews: 1.7-2.2

Quote of Homework Three

Doc Platter: I never could figure what the sky was thinking but the soil she don’t keep

too many secrets.

King of the Hill : A Rover Runs through it S9E1 (2004)

1. Review and Warm Ups

1.1. Parameterized Vector Form. Given the following non-homogeneous linear system,

x1 + 3x2 − 5x3 = 4

x1 + 4x2 − 8x3 = 7

−3x1 − 7x2 + 9x3 = −6.

Describe the solution set of the previous system in parametric vector form, and provide a geometric comparison with the solution to the

corresponding homogeneous system.

1.2. Spanning Sets. Given,

A =

266664
−4 −3 0

0 −1 4

1 0 3

5 4 6

377775 .(1)

Do the columns of A form a linearly independent set? What is the spanning set of the columns of A?

1.3. Range of a Matrix Transformation. Given,

A =

264 1 −3 −4

−3 2 6

5 −1 −8

375 , b =

264 b1

b2

b3

375 .(2)

Show that there does not exist a solution to Ax = b for every b ∈ R3 and describe the set of all {b1, b2, b3} for which Ax = b does have a

solution.

2. Continued Work with Language

Answer each true/false question in the chapter 1 supplemental section on page 102. It is not necessary to supply justifications but if you

want your logic checked then feel free to provide a justification.

3. Theory

3.1. Characterization of a Null Mapping. Suppose the vectors v1, . . . ,vp span Rn, and let T : Rn → Rn be a linear transformation.

Suppose, as well, that T (vi) = 0 for i = 1, . . . , p. Show that T is the zero-transformation. That is, show that if x is any vector in Rn, then

T (x) = 0.

3.2. Underdetermined and Square Matrix Transformations. If a linear transformation T : Rn → Rm maps Rn onto Rm then can

you give a relation between m and n? What if T is also a one-to-one transformation?

3.3. Transforming Linearly Combinations. Let T : Rn → Rm be a linear transformation. Show that if T maps two linearly independent

vectors onto a linearly dependent set of vectors, then the equation T (x) = 0 has a nontrivial solution.1

1Hint: Suppose u,v ∈ Rn are linearly independent but T (u), T (v) ∈ Rm are not. First, what must be true of u + v? Also, what must be true of

c1, c2 for c1T (u) + c2T (v) = 0? Using these facts show that T (x) = 0 has a nontrivial solution.

1



2

4. Rotation Transformations in R2 and R3

Given,

A(θ) =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#
.

4.1. Surjective Mapping. Show that this transformation is onto R2. 2

4.2. Injective Mapping. Show that the transformation is one-to-one. 3

4.3. The Unit Circle. Show that the transformation Aî rotates î = [1 0]t counter-clockwise by an angle θ and defines a parametrization

of the unit circle. What matrix would undo this transformation?

4.4. Determinant. Show that det(A) = 1.4

4.5. Orthogonality. Show that AtA = AAt = I.

4.6. Classical Result. Let A(θ)x = b for each θ ∈ S. Calculate,
x · b
|x||b| .

5 How is this related to θ? 6

4.7. Differentiation of Matrix Functions. If we define the derivative of a matrix function as a matrix of derivatives then a typical

product rule results. That is, if A,B have elements, which are functions of the variable θ then
d

dθ
[AB] = A

dB

dθ
+
dA

dθ
B. 7 Using the

identity AA−1 = I, show that

4.8. Rotations in R3. Given,
d
ˆ
A−1

˜
dθ

= A−1 dA

dθ
A−1. Verify this formula using the A matrix given above.

R1(θ) =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775 , R2(θ) =

2664
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

3775 R3(θ) =

2664
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

3775 .
Describe the transformations defined by each of these matrices on vectors in R3.

2Recall that a transformation is onto if there exists an x for every b in the co-domain.
3Recall that a transformation is one-to-one if and only if T (x) = 0 has only the trivial solution.
4We haven’t discussed determinants yet but for 2× 2 there is an easy formula given by,

A =

"
a b

c d

#
=⇒ det(A) = ad− bc(3)

, which should look familiar from homework 2.1.2 associated with requirement for having only the trivial solution.
5Recall that x · y and |x| are the standard dot-product and magnitude, respectively, from vector-calculus. These operations hold for vectors in Rn

but now have the following definitions, x · y = xty and |x =
√

xtx.
6What we are trying to extract here is the standard result from calculus, which relates the dot-product or inner-product on vectors to the angle

between them. This is clear when we have vectors in R2 or R3 since we have tools from trigonometry and geometry but when treating vectors in

Rn, n ≥ 4 these tools are no longer available. However, we would still like to have similar results to those of Rn, n = 2, 3. To make a long story short,

we will have these results for arbitrary vectors in Rn but not immediately. The first thing we must do is show that |x · y| ≤ |x||y|, which is known as

Schwarz’s inequality. Without this we cannot be permitted to always relate
x · b
|x||b|

to θ via inverse trigonometric functions. These details will occur in

chapter 6 where we find that by using the inner-product on vectors from Rn we will define the notion of angle and from that distance. Using these

definitions and Schwarz’s inequality will then give us a triangle-inequality for arbitrary finite-dimensional vectors. This is to say that the algebra of

vectors in Rn carries its own definition of angle and length - very nice of it don’t you think? Also, it should be noted that these results exist for certain

so-called infinite-dimensional spaces but are harder to prove and that the study of linear transformation of such spaces is the general setting for quantum

mechanics - see MATH503:Functional Analysis for more details.

7To see why this is true d, differentiate an arbitrary element of AB to find
d

dθ
[AB]ij =

d

dθ

nX
k=1

aikbkj =
nX

k=1

daik

dθ
bkj + aik

dbkj

dθ

http://en.wikipedia.org/wiki/Unit_circle 
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5. Introduction to Linear Algebra for Quantum Mechanics

Define the commutator and anti-commutator of two square matrices to be,

[·, ·] : Cn×n × Cn×n → Cn×n, such that [A,B] = AB−BA, for all A,B ∈ Cn×n,

{·, ·} : Cn×n × Cn×n → Cn×n, such that {A,B} = AB + BA, for all A,B ∈ Cn×n,

respectively. Also define the Kronecker delta and Levi-Civita symbols to be,

δij : N× N→ {0, 1}, such that δij =

(
1, if i = j,

0, if i 6= j

εijk : (i, j, k)→ {−1, 0, 1} , such that εijk =

8><>:
1, if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1, if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0, if i = j or j = k or k = i

respectively. Also define the so-called Pauli spin-matrices (PSM) to be,

σ1 = σx =

"
0 1

1 0

#
, σ2 = σy =

"
0 −i
i 0

#
, σ3 = σz =

"
1 0

0 −1

#
.

5.1. The PSM are self-adjoint matrices. Show that σm = σh
m for m = 1, 2, 3.

5.2. The PSM are unitary matrices. Show that σmσ
h
m = I for m = 1, 2, 3 where [I]ij = δij .

5.3. Trace and Determinant. Show that tr(σm) = 0 and det(σm) = −1 for m = 1, 2, 3.

5.4. Anti-Commutation Relations. Show that {σi, σj} = 2δijI for i = 1, 2, 3 and j = 1, 2, 3.

5.5. Commutation Relations. Show that [σi, σj ] = 2
√
−1

3X
k=1

εijkσk for i = 1, 2, 3 and j = 1, 2, 3.

5.6. Spin− 1
2

Systems. In quantum mechanics spin one-half particles, typically electrons8 , have ‘spins’ characterized by the following

vectors:

eu =

"
1

0

#
, ed =

"
0

1

#
,

where eu represents spin-up and ed represents spin-down.9 The following matrices,

S+ =

"
0 1

0 0

#
, S− =

"
0 0

1 0

#
,

are linear transformations, which act on eu and ed.

5.6.1. Projections of Spin− 1
2

Systems. Compute and describe the effect of the transformations, S+(eu + ed), and S−(eu + ed).

5.6.2. Properties of Projections. S+ and S− are projection transformations. Projection transformations are known to destroy information.

Justify this in the case of S+ by showing that S+ is neither one-to-one nor onto R2.

8In general these particles are called fermions. http://en.wikipedia.org/wiki/Spin-1/2, http://en.wikipedia.org/wiki/Fermions
9In quantum mechanics, the concept of spin was originally considered to be the rotation of an elementary particle about its own axis and thus was

considered analogous to classical angular momentum subject to quantum quantization. However, this analogue is only correct in the sense that spin obeys

the same rules as quantized angular momentum. In ‘reality’ spin is an intrinsic property of elementary particles and it is the roll of quantum mechanics

to understand how to associate quantized particles with spin to their associated background field in such a way that certain field properties/symmetries

are preserved. This is studied in so-called quantum field theory. http://www.physics.thetangentbundle.net/wiki/Quantum_mechanics/spin, http:

//en.wikipedia.org/wiki/Spin_(physics), http://en.wikipedia.org/wiki/Quantum_field_theory

http://en.wikipedia.org/wiki/Commutator
http://en.wikipedia.org/wiki/Commutator#Anticommutator
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Levi-Civita_symbol
http://en.wikipedia.org/wiki/Pauli_matrices
http://mathworld.wolfram.com/Self-AdjointMatrix.html
http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Spin-1/2
http://en.wikipedia.org/wiki/Fermions
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