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HW Problem. Schroeder problem 6.39, p. 246.

0.1.5 Connecting Boltzmann statistics to thermody-
namics

The formalism of Boltzmann statistics provides us with a statistical tool
for calculating the probabilities of the states of a system in thermal con-
tact with a reservoir that sets the temperature. This is analogous to, and
we showed it to follow from, our earlier formalism in which the probabil-
ities of macrostates of an isolated system are given by the ratios of their
multiplicities to the total multiplicity of the system. The partition function

Z =
∑

n

e−βEn (79)

in the new formalism, being the normalization constant that turns Boltz-
mann factors into probabilities:

Pn =
e−βEn

Z
, (80)

is analogous to the total multiplicity, which turns macrostate multiplicities
into probabilities in the original formalism:

Pmacrostate =
Ωmacrostate

Ωtot
. (81)

Just as the Boltzmann definition of the entropy

S = k lnΩ (82)

relates multiplicity to the thermodynamic entropy, there is a thermody-
namic analog of the logarithm of the partition function. But in this case,
the analogy follows directly from the earlier Boltzmann definition of the
entropy, with no need to introduce a new definition.
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To make the connection, we’ll use a calculation that is very similar to
the one we used to show that the probabilities of the states of a system
in thermal contact with a reservoir are given by (80). So, let’s begin by
recalling the essentials of that calculation. We said the probability of any
given state n of energy En of the system is proportional to the multiplicity
of the macrostate of the reservoir having energy Utot−En. That multiplicity
can be expressed as the exponential of the corresponding entropy, because
of the Boltzmann definition of entropy:

Pn ∝ ΩR(Utot − En) = eSR(Utot−En)/k . (83)
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The entropy of the reservoir at the energy Utot −En can be expanded in a
Taylor series about the energy Utot. That series is truncated to first order,
with the first derivative of the reservoir entropy introducing the inverse
temperature:

SR(Utot − En) ≈ SR(Utot)−
1
T

En , (84)

leading to the probability being proportional to a Boltzmann factor:

Pn ∝ e−En/kT . (85)

Normalization by direct summation of the expressions for the probability
leads to the probability being given by the ratio of a Boltzmann factor to
the partition function, the sum of all the Boltzmann factors.

In our new calculation, instead of arriving at the normalization constant
by summing expressions to which the probability is proportional, we’ll start
by directly writing down the normalization constant in terms of the total
multiplicity:

Pn =
ΩR(Utot − En)

Ωtot(Utot)
=

eSR(Utot−En)/k

eStot(Utot)/k
, (86)

where the last step follows from the Boltzmann definition of the entropy.
Now, in addition to the energy Utot of the combined system plus reser-

voir and the energy En of state n of the system alone, we’ll also use the
average energy of the system, which is its equilibrium energy,

〈E〉 = U =
∑

n

EnPn , (87)

in two ways. First, we’ll make use of the fact that entropy is extensive,
so we can write the entropy of the combined system plus reservoir in the
denominator of the probability in (86) as the sum of their entropies when
they are in equilibrium:

Stot(Utot) = SR(Utot − U) + S(U) . (88)

Second, we’ll do a Taylor series expansion of the entropy of the reservoir
appearing in the numerator of the probability in (86), but now expanding
about its equilibrium energy Utot − U , rather than Utot:

SR(Utot − En) = SR(Utot − U + U − En)

≈ SR(Utot − U) +
[
∂SR

∂U

]
V,N

dU

= SR(Utot − U) +
1
T

(U − En) .

(89)
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Now we put these two entropies back into the expression for the prob-
ability (86), obtaining

Pn =
eSR(Utot−U)/k e(U−En)/kT

eSR(Utot−U)/k eS(U)/k

=
e−En/kT

e−[U−TS(U)]/kT

=
e−βEn

e−βF
,

(90)

where F = U − TS is the Helmholtz free energy. Comparing this to our
expression for the probability in terms of the partition function (80), we
conclude that

−βF = ln Z or F = −kT lnZ . (91)

This means that all the thermodynamic power of the free energy is now
at our disposal. Once we have found the partition function for a system,
we can immediately obtain the free energy, which we know is minimized
at equilibrium. Furthermore, we can calculate from the free energy all the
thermodynamic quantities that follow from its partial derivatives. Recall
that with F = F (T, V,N), the partials are the factors of the differentials in
the total differential of F :

dF =
(

∂F

∂T

)
V,N

dT +
(

∂F

∂V

)
T,N

dV +
(

∂F

∂N

)
T,V

dN

= dU − T dS − S dT

= −S dT − P dV + µdN .

(92)

Notice that the entropy is one of the quantities we can obtain from the
free energy:

S(T, V,N) = −
(

∂F

∂T

)
V,N

= k lnZ +
kT

Z

(
∂Z

∂T

)
V,N

.

(93)

With that available, we can obtain the energy of the system

U(T, V,N) = F (T, V,N) + TS(T, V,N)

= −kT lnZ + kT lnZ +
kT 2

Z

(
∂Z

∂T

)
V,N

=
kT 2

Z

(
∂Z

∂T

)
V,N

.

(94)
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Note that this expression for the equilibrium energy is consistent with the
average energy computed from the probability distribution:

〈E〉 =
∑

n

EnPn =
∑

n

Ene−βEn

Z
= − 1

Z

∂Z

∂β
, (95)

since
∂Z

∂T
=

∂Z

∂β

dβ

dT
= − 1

kT 2

∂Z

∂β
. (96)

The expressions for the entropy in (93) and the energy in (94) are both
written with T , V , and N as the independent variables, which are not
the natural variables of either function. But with both functions available,
either could be used to eliminate T and find the other in terms of its natural
variables, that is, S(U, V,N) or U(S, V,N).

Thus, Z provides full thermodynamic information about the system,
either directly via the use of F to characterize the equilibrium states, or
indirectly through the ability to obtain the entropy or the energy in terms
of their natural variables.

HW Problem. Schroeder problem 6.42, p. 249.

HW Problem. Schroeder problem 6.43, p. 249.

Reading assignment. Schroeder, section 6.7.

0.1.6 Factorization of the partition function

One of the most endearing features of the partition function is that it can
often be partitioned into factors that can be calculated independently for
different parts of a system. You can easily see the general principle by
considering a system for which the energy of every state can be expressed
as a sum of two independent contributions

En = E
(1)
i + E

(2)
j . (97)

These must be independent, in the sense that the probabilities of the values
of each contribution do not depend on the value of the other. In that case,
the index n becomes equivalent to the composite index (i, j), which is an
ordered pair. As an example, you might think of the states of an ideal
gas of diatomic molecules, in quantized form. Then the translational and
rotational energies of the molecules are independent, and the energy of
the gas can be decomposed into a translational energy arising from the
translational motion of all the molecules and a rotational energy arising
from the rotational motion of all the molecules.
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With such a separation of the energies of the system, the partition
function becomes

Z =
∑

n

e−βEn

=
∑
i,j

e
−β

“
E

(1)
i +E

(1)
j

”

=
∑

i

e−βE
(1)
i

∑
j

e−βE
(1)
j

= Z(1)Z(2) .

(98)

When such a factorization is possible, the free energy decomposes into a
sum of terms arising from the factors:

F = −kT lnZ

= −kT lnZ(1) − kT lnZ(2)

= F (1) + F (2) .

(99)

Now this may all seem like a trivial curiosity, but it can provide dramatic
simplification in the calculation of a partition function. One especially
noteworthy family of cases are those in which the energy of a system can
be expressed in terms of independent contributions from noninteracting
constituents. Our favorite toy systems, the Einstein solid, the two-state
paramagnet, and the ideal gas are all examples of systems for which that is
true. In such cases, the partition function factors into contributions from
each of the constituents:

Z = Z(1)Z(2) · · ·Z(N) . (100)

What’s more, in many such cases, the constituent partition functions are
all the same, and it is only necessary to calculate one of them:

Z = ZN
constituent . (101)

You can see that factorization can be extraordinarily powerful, in spite of
its simplicity.

Example. Let’s see how much easier it can be to find the partition function
of a two-state paramagnet when we make use of factorization. The energies
of the individual constituents, the magnetic moments, are εi = ±µB, where
µ is the magnetic moment, and B is the strength of the external magnetic
field. The energy of a particular state of an N -moment system can then be
written as the sum

En =
N∑

i=1

σ
(n)
i µB =

(
N

(n)
↓ −N

(n)
↑

)
µB , (102)
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where

σ
(n)
i =

{
+1, antialigned moment
−1, aligned moment .

(103)

The calculation of the partition function requires a sum over all possible
states, which requires enumeration of all possible sets of values of the σi:

Z =
∑
σ1

∑
σ2

· · ·
∑
σN

e−β
P

i σiµB . (104)

You can see that direct evaluation of the sum is quite a daunting task,
particularly if N is a macroscopically large number like 1023.

One way to simplify the sum would be to change it from a sum over
microstates to a sum over energies, using the ability to express the energy in
the simpler form (N↓−N↑)µB together with our previous knowledge of the
multiplicities of the energies (macrostates) of the two-state paramagnet.

It is much simpler to make use of the factorizability of the partition func-
tion. While it is straightforward to demonstrate explicitly the reduction to
factorized form for this system, we’ll just use what we already know: if the
energy decomposes into a sum of independent contributions, the partition
function factors into a product of partition functions that can be calculated
independently for each contribution to the energy. Thus:

Z = Z(1)Z(2) · · ·Z(N) = ZN
1 moment , (105)

where the last equality follows from that fact that all the moments are the
same, so they each have the same individual contribution to the partition
function. That contribution is very easy to calculate:

Z1 moment =
∑

σ

e−βσµB

= eβµB + e−βµB

= 2 cosh(βµB) .

(106)

The full partition function for the system is then simply

Z = ZN
1 moment = [2 cosh(βµB)]N . (107)

[EOC, Fri. 3/31/2006, #32]
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