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is equal to 3.

To find the desired linear combination we need to solve:

x







1
1
0





+ y







0
2
3





+ z







1
2
3





 =







3
6
6







or






1 0 1
1 2 2
0 3 3













x
y
z





 =







3
6
6







Gaussian elimination could proceed as follows (the sequence of steps is not unique
of course): first divide the third row by 3

1 0 1 3
1 2 2 6
0 1 1 2

1 0 1 3
0 2 1 3
0 1 1 2

1 0 1 3
0 0 −1 −1
0 1 1 2

1 0 1 3
0 0 1 1
0 1 0 1

1 0 1 3
0 1 0 1
0 0 1 1

Thus we have z = y = 1 and x + z = 3, which implies that x = 2. So, the solution
is (2, 1, 1) and you can verify that

2







1
1
0





+ 1







0
2
3





+ 1







1
2
3





 =







3
6
6







3.10 Least Squares

In this section we will consider the problem of solving Ax = y when no solution exists!
I.e., we consider what happens when there is no vector that satisfies the equations ex-
actly. This sort of situation occurs all the time in science and engineering. Often we
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make repeated measurements which, because of noise, for example, are not exactly con-
sistent. Suppose we make n measurements of some quantity x. Let xi denote the i-th
measurement. You can think of this as n equations with 1 unknown:



















1
1
1
...
1



















x =



















x1

x2

x3

...
xn



















Obviously unless all the xi are the same, there cannot be a value of x which satisfies all
the equations simultaneously. Being practical people we could, at least for this simple
problem, ignore all the linear algebra and simply assert that we want to find the value
of x which minimizes the sum of squared errors:

min
x

n
∑

i=1

(x − xi)
2 .

Differentiating this equation with respect to x and setting the result equal to zero gives:

xls =
1

n

n
∑

i=1

xi

where we have used xls to denote the least squares value of x. In other words the value
of x that minimizes the sum of squares of the errors is just the mean of the data.

In more complicated situations (with n equations and m unknowns) it’s not quite so
obvious how to proceed. Let’s return to the basic problem of solving Ax = y. If y were
in the column space of A, then there would exist a vector x such that Ax = y. On the
other hand, if y is not in the column space of A a reasonable strategy is to try to find
an approximate solution from within the column space. In other words, find a linear
combination of the columns of A that is as close as possible in a least squares sense to
the data. Let’s call this approximate solution xls. Since Axls is, by definition, confined
to the column space of A then Axls − y (the error in fitting the data) must be in the
orthogonal complement of the column space. The orthogonal complement of the column
space is the left null space, so Axls − y must get mapped into zero by AT :

AT
(

Axls − y
)

= 0

or
AT Axls = ATy

These are called the normal equations. Now we saw in the last chapter that the outer
product of a vector or matrix with itself defined a projection operator onto the subspace
spanned by the vector (or columns of the matrix). If we look again at the normal
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equations and assume for the moment that the matrix AT A is invertible, then the least
squares solution is:

xls = (AT A)−1ATy

The matrix (AT A)−1AT is an example of what is called a generalized inverse of A. In the
even that A is not invertible in the usual sense, this provides a reasonable generalization
(not the only one) of the ordinary inverse.

Now A applied to the least squares solution is the approximation to the data from within
the column space. So Axls is precisely the projection of the data y onto the column
space:

Axls = A(AT A)−1ATy.

Before when we did orthogonal projections, the projecting vectors/matrices were orthog-
onal, so AT A term would have been the identity, but the outer product structure in Axls
is evident.

The generalized inverse projects the data onto the column space of A.

A few observations:

• When A is invertible (square, full rank) A(AT A)−1AT = AA−1(AT )−1AT = I, so
every vector projects to itself.

• AT A has the same null space as A. Proof: clearly if Ax = 0, then AT Ax = 0. Going
the other way, suppose AT Ax = 0. Then xT AT Ax = 0. But this can also be written
as (Ax, Ax) = ‖Ax‖2 = 0. By the properties of the norm, ‖Ax‖2 = 0 ⇒ Ax = 0.

• As a corollary of this, if A has linearly independent columns (i.e., the rank r = m)
then AT A is invertible.

Finally, it’s not too difficult to show that the normal equations can also be derived by
directly minimizing the following function:

‖Ax − y‖2 = (Ax − y, Ax − y).

This is just the sum of the squared errors, but for n simultaneous equations in m un-
knowns. You can either write this vector function out explicitly in terms of its components
and use ordinary calculus, or you can actually differentiate the expression with respect
to the vector x and set the result equal to zero. So for instance, since

(Ax, Ax) = (AT Ax,x) = (x, AT Ax)

differentiating (Ax, Ax) with respect to x yields 2AT Ax, one factor coming from each
factor of x. The details will be left as an exercise.
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3.10.1 Examples of Least Squares

Let us return to the problem we started above:


















1
1
1
...
1



















x =



















x1

x2

x3

...
xn



















Ignoring linear algebra and just going for a least squares value of the parameter x we
came up with:

xls =
1

n

n
∑

i=1

xi.

Let’s make sure we get the same thing using the generalized inverse approach. Now, AT A
is just

(1, 1, 1, ..., 1)



















1
1
1
...
1



















= n.

So the generalized inverse of A is

(AT A)−1AT =
1

n
(1, 1, 1, ..., 1) .

Hence the generalized inverse solution is:

1

n
(1, 1, 1, ..., 1)



















x1

x2

x3

...
xn



















=
1

n

n
∑

i=1

xi

as we knew already.

Consider a more interesting example







1 1
0 1
0 2







(

x
y

)

=







α
β
γ







Thus x + y = α, y = β and 2y = γ. So, for example, if α = 1, and β = γ = 0, then
x = 1, y = 0 is a solution. In that case the right hand side is in the column space of A.
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But now suppose the right hand side is α = β = 0 and γ = 1. It is not hard to see that
the column vector (0, 1, 1)T is not in the column space of A. (Show this as an exercise.)
So what do we do? We solve the normal equations. Here are the steps. We want to solve
(in the least squares sense) the following system:







1 1
0 1
0 2







(

x
y

)

=







0
0
1







So first compute

AT A =

(

1 1
1 6

)

.

The inverse of this matrix is

(

AT A
)

−1
=

1

5

(

6 −1
−1 1

)

.

So the generalized inverse solution (i.e., the least squares solution) is

xls =

(

1 −1/5 −2/5
1 1/5 2/5

)







0
0
1





 =

(

−2/5
2/5

)

.

The interpretation of this solution is that it satisfies the first equation exactly (since
x+ y = 0) and it does an average job of satisfying the second and third equations. Least
squares tends to average inconsistent information.

3.11 Eigenvalues and Eigenvectors

Recall that in Chapter 1 we showed that the equations of motion for two coupled masses
are

m1ẍ1 = −k1x1 − k2(x1 − x2).

m2ẍ2 = −k3x2 − k2(x2 − x1).

or, restricting ourselves to the case in which m1 = m2 = m and k1 = k2 = k

ẍ1 = −
k

m
x1 −

k

m
(x1 − x2)

= −ω2
0x1 − ω2

0(x1 − x2)

= −2ω2
0x1 + ω2

0x2. (3.11.1)


