Class 7

- EM wave review
- Calculation of intensity
- Monochromatic Michelson interferometer
- Quasi-monochromatic Michelson
- Autocorrelation theorem
- Fourier Transform interferometer

Solutions of scalar wave equation

- $2^{\text {nd }}$ order PDE: $\frac{\partial^{2}}{\partial z^{2}} \psi(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(z, t)=0$
- Assume separable solution
- 2 solutions for $f(z), g(t)$

$$
\psi(z, t)=f(z) g(t)
$$

- Full solution is a linear combination of both solutions $\psi(z, t)=f(z) g(t)=\left(A_{1} \cos k z+A_{2} \sin k z\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)$
- Equivalent representation:
$\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)$
forward propagating + backward propagating waves
- Complex (phasor) representation:
$\psi(z, t)=\operatorname{Re}\left[a e^{i(k z-\omega t+\phi)}\right] \quad$ or $\quad \psi(z, t)=\operatorname{Re}\left[A e^{i(k z-\omega t)}\right]$
Here A is complex, includes phase

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:
$\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Using: $\quad \varepsilon_{0} \mu_{0}=1 / c^{2}$

The electric field is a vector function in 3D, so this is actually 3 equations:

$$
\begin{aligned}
\rightarrow & \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
& \varepsilon_{0}(1+\chi)=\varepsilon=n^{2} \\
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0
\end{aligned}
$$

$$
\vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0
$$

$$
\vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.
For a plane wave \mathbf{E} is perpendicular to \mathbf{k}, so \mathbf{E} can also point in \mathbf{y}-direction

Complex notation for EM waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one component
- Method 1: $\mathbf{E}(z, t)=\hat{\mathbf{x}} \operatorname{Re}\left[A e^{i(k z-\omega t)}\right] \quad A=E_{x} e^{i \phi}$
- Method 2:

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}}\left(A e^{i(k z-\omega t)}+c . c .\right) \quad A=\frac{1}{2} E_{x} e^{i \phi}
$$

- In nonlinear optics, we have to explicitly include conjugate term. Leads to extra factor of $1 / 2$.

Wave energy and intensity

- Both E and H fields have a corresponding energy density ($\mathrm{J} / \mathrm{m}^{3}$)
- For static fields (e.g. in capacitors) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

H field from E field

- H field for a propagating wave is in phase with Efield

$$
\begin{aligned}
\mathbf{H} & =\hat{\mathbf{y}} H_{0} \cos \left(k_{z} z-\omega t\right) \\
& =\hat{\mathbf{y}} \frac{k_{z}}{\omega \mu_{0}} E_{0} \cos \left(k_{z} z-\omega t\right)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{0}=\frac{k_{z}}{\omega \mu_{0}} E_{0} \quad k_{z}=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
\end{aligned}
$$

Energy density in an EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 & \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}
$$

- For our plane wave,

$$
\begin{aligned}
\mathbf{S} & =\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}} \\
\mathbf{S} & =n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}} \\
& -\mathbf{S} \text { is along } \mathbf{k}
\end{aligned}
$$

- Time average: $\quad \mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of \mathbf{S}

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } F=\frac{I}{h v}
$$

Calculating intensity with complex wave representation

- Using the convention that we work with the complex form, with the field being the real part

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} \operatorname{Re}\left[A e^{i(k z-\omega t)}\right] \quad A=E_{x} e^{i \phi}
$$

- Or write

$$
\mathbf{E}(z, t)=\mathbf{E}_{0} e^{i(k z-\omega t)} \quad \mathbf{E}_{0} \text { complex, vector }
$$

- take the real part when we want the field
- Time-averaged intensity

$$
I=\frac{1}{2} n \varepsilon_{0} c \mathbf{E}_{\mathbf{0}} \cdot \mathbf{E}_{\mathbf{0}}{ }^{*}
$$

- Notice this is the sum of intensities for the different polarization components

Example: Michelson interferometer

- calculate output intensity
- 50-50 beamsplitter for power
- Transmitted field:
- b/s $\quad \frac{1}{\sqrt{2}} \hat{\mathbf{x}} E_{0} e^{-i \omega t}$
- Return $\frac{1}{\sqrt{2}} \hat{\mathbf{x}} E_{0} e^{i\left(2 k L_{1}-\omega t\right)}$
- Detector $-\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k\left(2 L_{1}+L_{3}\right)-\omega t\right]}$ reflected π
- Reflected field at detector

$$
\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k\left(2 L_{2}+L_{3}\right)-\omega t\right]}
$$

- Total field at detector

$$
\begin{aligned}
\mathbf{E}_{\text {out }} & =-\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k\left(2 L_{1}+L_{3}\right)-\omega t\right]}+\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k\left(2 L_{2}+L_{3}\right)-\omega t\right]} \\
& =\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k L_{3}-\omega t\right]}\left(-e^{i k 2 L_{1}}+e^{i k 2 L_{2}}\right)
\end{aligned}
$$

Michelson: output intensity

- Calculate intensity of output

$$
\left.\begin{array}{l}
I=\frac{1}{2} n \varepsilon_{0} c \mathbf{E}_{\text {out }} \cdot \mathbf{E}_{\text {out }}{ }^{*}=\frac{1}{2} n \varepsilon_{0} c\left(\left|\mathbf{E}_{1}\right|^{2}+\left|\mathbf{E}_{2}\right|^{2}+\mathbf{E}_{1} \cdot \mathbf{E}_{2}{ }^{*}+\mathbf{E}_{2} \cdot \mathbf{E}_{1}{ }^{*}\right) \\
\quad \mathbf{E}_{\text {out }}=\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k L_{3}-\omega t\right]}\left(-e^{i k 2 L_{1}}+e^{i k 2 L_{2}}\right) \\
I=\frac{1}{2} n \varepsilon_{0} c\left(\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k L_{3}-\omega t\right]}\left(-e^{i k 2 L_{1}}+e^{i k L_{2}}\right)\right) \cdot\left(\frac{1}{2} \hat{\mathbf{x}} E_{0} e^{i\left[k L_{3}-\omega t\right]}\left(-e^{i k 2 L_{1}}+e^{i k 2 L_{2}}\right)\right)^{*} \\
I=\frac{1}{8} n \varepsilon_{0} c\left|E_{0}\right|^{2}\left(-e^{i k 2 L_{1}}+e^{i k 2 L_{2}}\right) \cdot\left(-e^{-i k 2 L_{1}}+e^{-i k 2 L_{2}}\right) \\
\text { In terms of input intensity } \\
I_{0}=\frac{1}{2} n \varepsilon_{0} c\left|E_{0}\right|^{2} \\
\quad=\frac{1}{4} I_{0}\left(2-e^{i k 2\left(L_{1}-L_{2}\right)}-e^{-i k\left(L_{1}-L_{2}\right)}\right) \quad \text { In terms of time delay } \\
\end{array} I_{0}\left(1-\cos \left[k 2\left(L_{1}-L_{2}\right)\right]\right) \quad 2 k\left(L_{1}-L_{2}\right)=\omega \frac{2\left(L_{1}-L_{2}\right)}{c}=\omega \tau\right]
$$

Michelson: time-dependent fields

- Now consider the case where the field has time dependence

$$
\begin{gathered}
\mathbf{E}_{i n}(t)=\hat{\mathbf{x}} E_{0}(t) e^{-i \omega_{0} t} \quad \rightarrow \mathbf{E}_{o u t}(t)=\frac{1}{2}\left(\mathbf{E}_{i n}(t)-\mathbf{E}_{i n}(t-\tau)\right) \\
I(t)=\frac{1}{2} n \varepsilon_{0} c\left(\left|\mathbf{E}_{i n}(t)\right|^{2}+\left|\mathbf{E}_{i n}(t-\tau)\right|^{2}+\mathbf{E}_{i n}(t) \cdot \mathbf{E}_{i n}(t-\tau)^{*}+\mathbf{E}_{i n}(t-\tau) \cdot \mathbf{E}_{i n}(t)^{*}\right)
\end{gathered}
$$

- This implicitly is a time average over the fast timescale of the carrier
- Now average over a much longer time

$$
\langle I(t)\rangle=\int_{-\infty}^{\infty} I(t) d t=2 I_{0}+\int_{-\infty}^{\infty} E_{0}(t) E_{0}(t-\tau)^{*} d t+c . c .
$$

This part is the field autocorrelation

Autocorrelation (Wiener-Khinchin) theorem

$$
f_{A C}(\tau)=\int f(t) f^{*}(t+\tau) d t \quad \text { autocorrelation }
$$

- Connect the autocorrelation to the spectrum

$$
\begin{aligned}
& F T_{\tau}\left\{\int f(t) f^{*}(t+\tau) d t\right\}=\iint f(t) f^{*}(t+\tau) d t e^{i \omega \tau} d \tau \\
& =\int f(t) d t \int f^{*}(t+\tau) e^{i \omega \tau} d \tau=\int f(t) d t\left[\int f(t+\tau) e^{-i o \tau} d \tau\right]^{*}
\end{aligned}
$$

$$
\text { Let } t^{\prime}=t+\tau \quad d t^{\prime}=d \tau \quad \text { But flip limits }
$$

$$
\begin{aligned}
F T_{\tau}\left\{f_{A C}(t)\right\} & =\int f(t) d t\left[\int f\left(t^{\prime}\right) e^{-i \omega\left(t^{\prime}-t\right)} d t^{\prime}\right]^{*}=\int f(t) d t[F(-\omega)] e^{*-i \omega t} \\
& =F^{*}(-\omega) \int f(t) e^{-i \omega t} d t=F^{*}(-\omega) F(-\omega)
\end{aligned}
$$

If $\mathrm{f}(\mathrm{t})$ is real, then $\mathrm{F}(\omega)$ is even, and $\quad F T_{\tau}\left\{f_{A C}(t)\right\}=|F(\omega)|^{2}$

Fourier transform spectrometer

- Measure interference, subtract DC, FT to get spectrum
- Single detector, better signal/noise

Optical Path Difference

Wavenumber $\mathrm{cm}-1$
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/ Vibrational_Spectroscopy/Infrared_Spectroscopy/ How_an_FTIR_Spectrometer_Operates

Coherence time

- Note that for large time delay, time averaged signal is constant (sum of two intensities)
- Beyond "coherence time" no interference
- Coherence time is inverse of spectral bandwidth

$$
T_{c} \equiv 1 / \Delta v
$$

