Class 7

EM wave review

Calculation of intensity

Monochromatic Michelson interferometer
Quasi-monochromatic Michelson
Autocorrelation theorem

Fourier Transform interferometer



Solutions of scalar wave equation

9’ 1 o°
« 2 order PDE: —v(z.0)—— =—Sv(z,1)=0
0z c” ot

— Assume separable solution
_ 2 solutions for f(z), g(t) w(zn=7(2)g(t)
— Full solution is a linear combination of both solutions
V(z,t)= f(z)g(t) = (A1 coskz+ A sin kz)(B1 coswt+ B, sina)t)
— Equivalent representation:
Y(z,t)= 4, cos(kz+ a)t+¢l)+ A, cos(kz— a)t+¢2)
forward propagating + backward propagating waves
« Complex (phasor) representation:

W(z,t)= Re[a ei(kz_wtm)} or Y(z,t)= Re[ y ei(kz—wt):|

Here A is complex, includes phase



Maxwell's Equations to wave egn

« The induced polarization, P, contains the effect of the medium:

V-E=0 VxE_—a—B
ot
~ 1 OE oP
V:-B=0 V><B——— o
c* ot Ho ot
Take the curl:
- = d = o 1 dE oP
VX(VXE|=——VXB=— + U, —
(VxE)=—3 at(cz or arj

Use the vector ID:
Ax(BxC)=B(A-C)-C(AB)

—

?x(VxE\ ~V(V-E —(V?)E:—VZE

“Inhomogeneous Wave Equation”




Maxwell's Equations in a Medium

* The induced polarization, P, contains the effect of the medium:

 Sinusoidal waves of all frequencies are solutions to the wave equation

* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which
frequencies will occur.

* For linear response, P will oscillate at the same frequency as the input.
P(E)=¢,xE

* In nonlinear optics, the induced polarization is more complicated:
P(E)=¢,(x"E+y"E + "B +..)

* The extra nonlinear terms can lead to new frequencies.



Solving the wave equation:
linear induced polarization

For low irradiances, the polarization is proportional to the incident field:
P(E)=¢xE, D=¢gE+P=¢,(l+y)E=¢E=nE

In this simple (and most common) case, the wave equation becomes:

. 10°E 1 0°E _ n* 0°E

V’E - = —VE-——=0
¢t ot A ot? ¢’ ot

Using: g i, =1/¢’ g, (1+x) =e=n’

The electric field is a vector )
function in 3D, so this is VE (r t)_n_a_E (r.f)=0
actually 3 equations: YA ’



Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y:

VE(z0) =L B(20) ¢ L () 2B (z0) =L B (=.0)

0x 0y 0z 0z
PE_ W PE _
dz° ¢ ot

The solutions are oscillating functions, for example
E(z,t)=XE, cos(k z—ot)
Where w=kc, k=2mn/A, v =c/n

This is a linearly polarized wave.
For a plane wave E is perpendicular to k, so E can also point in y-direction



Complex notation for EM waves
 \Write cosine in terms of exponential

% 2 1 ( kz—t+ —i( kz—wt+
E(z,t)=XE, cos(kz—a)t+qb)=xExE(el(kZ D4t ¢))

— Note E-field is a real quantity.
* It iIs convenient to work with just one component

— Method 1: E(Z,l_)zﬁRel:Aei(kZ—aﬂ)} A:Exei(l)

— Method 2: E(Z,t)zﬁ(Aei(kz—a)t) +C.C.) A=1E ¢"

 In nonlinear optics, we have to explicitly include
conjugate term. Leads to extra factor of V.



Wave energy and intensity

* Both E and H fields have a corresponding

energy density (J/m?3)
— For static fields (e.g. in capacitors) the energy

density can be calculated through the work
done to set up the field
p = %SE ? + % uH . Ppictetric
— Some work is required to polarize the medium
— Energy is contained in both fields, but H field
can be calculated from E field
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H field from E field

* H field for a propagating wave is in phase with E-

f|e|d Electromagnetic Wave
-<4— Magnetic Field (B)

Electric —
Field (E)

H=yH cos(kzz — (ot)

k Lf:;z,g_ A ‘
= 5’ = EO COS(kZZ — G)f) < " ; ':‘"’ Propagation
CO‘U e Direction
0 Wavelength (A) EEEi Sa

e, o

Figure 1

 Amplitudes are not independent

| 1
HO = — k = ng C2 = > =E,C
W, : ¢ Ho&, HyC
H =——FE =neck



Energy density in an EM wave

* Back to energy density, non-magnetic

p=%8E2+%‘LLOH2 H = necE
g=gn’
p=ten’E*+Lun’e’c’E’

uec’ =1
272 2 2 2
p=¢gn E"=€g,n"E" cos (kzz—a)t)

Equal energy in both components of wave



Cycle-averaged energy density

» Optical oscillations are faster than detectors
* Average over onle cycle:
T
(p)=€n’E,’ —J cos’ (kzz — a)t)dt

0
— Graphically, we can see this should = 7%

0.5 1.0 I.

— Regardless of position z




Intensity and the Poynting vector

* Intensity is an energy flux (J/s/cm?)
* In EM the Poynting vector give energy flux
S=EXxH

— For our plane wave,

S=EXH=E, cos(kzz — a)t)nSOcEO cos(kzz— a)t)ﬁ Xy

2 2 A
S = necE; cos (kzz — a)t)z

— Sis along k
» Time average: S=1ng,cEZ
* Intensity is the magnitude of S

1
[ =—ng,c
2

C
E(? :;p:Vphase p

Photon flux:

F=—




Calculating intensity with complex
wave representation

* Using the convention that we work with the
complex form, with the field being the real part

E(z,t)zf(Re[Aei(kZ_“”)] A=E¢"
— Or write
E(Z,t) :Eoei(kz_“”) E, complex, vector

— take the real part when we want the field

 Time-averaged intensit 1 )
J y IzzneocEO-E0

— Notice this is the sum of intensities for the different
polarization components



Example: Michelson interferometer

» calculate output intensity T
— 50-50 beamsplitter for power E, Lo
— Transmitted field: — b
* bls FXE;e & |
» Return  XEe™ " Internal L,
» Detector —1XE, ei[k(2L1+L3)—W] reflected T

phase shift

— Reflected field at detector
%ﬁEOei[k(2L2+L3)—a)tJ

— Total field at detector
E Eoei[k(2L1+L3)—a)t] n %)A(Eoe

1% il (2L, +L;)-wt |
out 2

A [k Li—wt k2L k2L

%XEOe’[ 0 ](—el '+e 2)



Michelson: output intensity

 Calculate intensity of output

I = %ngocEm E, ‘= %neoc(|E1|2 +[E +E,-E, +E, E)

A |k L,—wt k2L k2L
E :%XEOe’[ 3w](—el '+ ¢ 2)

out

*

1 - j - ] ] A / _ . .
] = Engoc(%XEOel[kl@ a)t] (_elk2Ll + elk2L2 )) . (%XEoel[kL3 (Ut] (_elk2L1 + elk2L2 ))

1 2 . ¥ ¥
I=§neoc|E0| (_ezk2Ll _I_eszLz).(_e ik2L 4 zk2L2)

. . . 1 2
In terms of input intensity [, = 5n806‘|Eo|

1 k2L — k2L~ :
I = Z10(2—e ¥2Ab~ta) _ gikalh Lz)) In terms of time delay
| 2(L,-L,)

ZEIO(I—COS[kz(LI—Lz)]) 2k(L, - L,)=o - =0T




Michelson: time-dependent fields

* Now consider the case where the field has time
dependence

E,(1)=XE,(t)e™ —E,,(t)=4(E,()-E,(-1))

I(t)= %neoc(

Ein (t)|2 +|Ein (t _T)|2 +Ein (t)'Ein (t_T)* +Ein(t_7:)'Ein (t)*)

— This implicitly is a time average over the fast timescale
of the carrier

* Now average over a much longer time
(1()) = [ 1()dr =21, + [ Ey(1)Ey(1—7) di+ecc.

This part is the field autocorrelation



Autocorrelation (Wiener-Khinchin) theorem
fic(T J f(e)f (¢+7)dt autocorrelation

» Connect the autocorrelation to the spectrum
FT {Jf (t+7 dt} ”f (t+7)dte” dt
= [F()ai] 1 (t+2)e” ar=[ f(t)dt] [ f(e47)e ™ ar ]
Let t'=t+7 dt’=dt But flip limits
FTfoc (0= [ 1)t [ ()™ ar| = [ £ (1)di[F(-0)] e
= F(-0)[ f(1)e ™ di = F (-0)F(-0)

If f(t) is real, then F(w) is even, and /1 {fAC (f)} = ‘F(w)‘z




Fourier transform spectrometer

« Measure interference, subtract DC, FT to get
spectrum

— Single detector, better signal/noise
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Optical Path Difference Wavenumber cm-1

http://chemwiki.ucdavis.edu/Physical Chemistry/Spectroscopy/
Vibrational Spectroscopy/Infrared Spectroscopy/
How_an_ FTIR Spectrometer Operates



Coherence time

* Note that for large time |
delay, time averaged |
signal is constant (sum of [
two intensities)

* Beyond “coherence time”
no interference |

« Coherence time is inverse
of spectral bandwidth

Relative Intensity

Optical Path Difference

T =1/Av



