We've looked at how the Helmholtz recipe lets us generate potentials that describe $\vec{E} \& \vec{B}$. Let's do it for something new. Let's find potentials that describe \vec{J} .

Start by writing down the divergence of and the curl of \vec{J} . The latter might take some creative effort; what sorts of things are \vec{J} related to in a straightforward fashion?

Given $\nabla \times \vec{J}$ and $\nabla \cdot \vec{J}$, work through the Helmholtz recipe to find scalar and vector potentials that describe J, and write down the rules for how to get to J from those potentials.

Click in when you're done.

Does this vector field have curl?

What about this one?

A) Yes, everywhere B) Yes, somewhere

C) No, nowhere