Today!' Lagrangian Mech: (Ex. from chi 7) Wed : Some more $(\sim \rightarrow 7,9)$
Frow last time:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}-Q_{j}=\varnothing
$$

个
generalized.
If Q_{j} could be written as

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial u}{\partial \dot{q}_{j}}\right)-\frac{\partial U}{\partial q_{j}}=Q_{j} \\
\rightarrow & \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=\phi^{n} \quad L=T-U
\end{aligned}
$$

as necessarily
nomservative.

If you hove some forces that you cownit),

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial \dot{q}_{j}}=Q_{j, n c}
$$

Other assumption: Forces of constraint did/do no works.

Easiest example: Cartesian coorde $\vec{F}_{\text {net }}=-\nabla u$

Newtonian

$$
\begin{aligned}
& F_{x}=m \ddot{x}=-\frac{\partial u}{\partial x} \\
& F_{y}=m \ddot{y}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

Lagrange

$$
\begin{aligned}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& w=u=-\int_{\dot{v}^{\prime}}^{\tilde{F}} \cdot d \dot{r} \\
& L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-u \\
& \frac{\partial L}{\partial x}=-\frac{\partial u}{\partial x} ; \frac{\partial L}{\partial \dot{x}}=m \dot{x} \\
& \frac{d}{\partial t}\left(\frac{\partial L}{\partial \dot{x}}\right)=m \dot{x} \\
& \frac{\partial L}{\partial x}-\frac{d}{\partial t}\left(\frac{\partial L}{\partial \dot{x}}\right)=-\frac{\partial u s}{\partial x}-m \dot{x}=\varnothing \\
& m \dot{x}=-\frac{\partial u}{\partial x}
\end{aligned}
$$

Pendulum:
Newtonian

$$
\begin{aligned}
& \sum F_{x}=m a_{x, c m}=N_{x}=m \ddot{x} \\
& \sum F_{y}=N_{y}-m g=m a_{y_{1}, m}=m \dot{y} \\
& \left\{\begin{aligned}
x= & l_{c m} \sin \theta \\
y= & -l_{\operatorname{cm}} \cos \theta \\
\dot{x}= & l_{\cos } \cos \theta \dot{\theta} \\
\dot{y}= & +l_{\operatorname{cm}} \sin \theta \dot{\theta} \\
\ddot{x}= & -l_{\operatorname{cm}} \sin \theta \dot{\theta}^{2} \\
& +l_{m} \cos \theta \ddot{\theta} \\
\ddot{y}= & l_{c m} \cos \theta \dot{\theta}^{2} \\
& +l_{c m} \sin \theta \ddot{\theta}
\end{aligned}\right.
\end{aligned}
$$

Ny う下
4. λ_{cm} Lagrangian
$\stackrel{\rightharpoonup}{\mathrm{g}}$

$$
T=\frac{1}{2} I \omega^{2}
$$

$$
I=\frac{1}{3} m l^{2}
$$

$$
T=\frac{1}{2}\left(\frac{1}{3} m l^{2}\right) \dot{\theta}^{2}
$$

$$
w=m g h=-m g l o m \cos \theta
$$

$6 T$ does $\left.=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} I \omega_{c m}^{2}\right)$

$$
L=T-U-\frac{1}{6} m l^{2} \theta^{2}+m g l_{m} \cos \theta
$$

$$
\frac{\partial L}{\partial \theta}=-m g l_{\cos } \sin \theta
$$

3 unknowns, regis.

$$
\frac{\partial l}{\partial \dot{\theta}}=\frac{1}{3} m l^{2} \dot{\theta}
$$ vT gives $3^{\text {rd }}$ equ.

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial l}{\gamma \theta}\right)=\frac{1}{3} m l^{2} \ddot{\theta} \\
\Rightarrow-m g l \cos \sin \theta-\frac{1}{3} m l^{2} \ddot{\theta}=\varnothing \\
\ddot{\theta}=-\frac{3 g l \sin }{l^{2}} \sin \theta
\end{gathered}
$$

kind of a toss up. (ET would work)

Now:

$$
\begin{aligned}
& s=R \sin \theta \\
& z=R \cos \theta
\end{aligned}
$$

Bead constrained on hoop w/out friction.

$$
\begin{aligned}
& \text { Newtonian: } \\
& \varepsilon F_{z}=N \cos \theta-m g=m \ddot{z} \\
& \varepsilon F_{s}=-N \sin \theta=-m \dot{s}-m s \dot{\phi}^{2} \\
& \left.=-m\left(\check{s}+s \omega^{2}(t)\right)\right\} \\
& \dot{z}=-R \sin \theta \dot{\theta} \\
& \ddot{z}=-R \cos \theta \dot{\theta}^{2}-R \sin \theta \ddot{\theta} \\
& \dot{s}=R \cos \theta \dot{\theta} \\
& \dot{S}=-R \sin \theta \dot{\theta}^{2}+R \cos \theta \ddot{\theta} \\
& \text { (Lagrangian } \\
& T=\frac{1}{2} m v^{2}=\frac{1}{2} m(s \omega)^{2} \\
& +\frac{1}{2} w \dot{S}^{2} \\
& +\frac{1}{2} w \dot{z}^{2} \\
& =\frac{1}{2} m\left(R^{2} \sin ^{2} \theta \omega^{2}(t)\right) \\
& +\frac{1}{2} m R^{2} \cos ^{2} \dot{\theta}^{2} \\
& +\frac{1}{2} m R^{2} \sin ^{2} \theta \theta^{2} \\
& u=-m g R \cos \theta \\
& N \cos \theta-m g=m\left(-R \cos \theta \dot{\theta}^{2}-R \sin \theta \ddot{\theta}\right) \\
& L=T-U \\
& -N \sin \theta=-m\left(-R \sin \theta \dot{\theta}^{2}+R \cos \theta \dot{\theta}+R \sin \theta \omega^{2}(t)\right) \\
& L=\frac{1}{2} m R^{2} \sin ^{2} \theta \omega^{2}+\frac{1}{2} m R^{2} \dot{\theta}^{2}+m g R \cos \theta \\
& \frac{\partial L}{\partial \theta}=m R^{2} \sin \theta \cos \theta \omega^{2}-m g R \sin \theta \\
& \frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta} \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m R^{2} \ddot{\theta} \\
& m R^{2} \sin \theta \cos \theta \omega^{2}-m g R \sin \theta-m R^{2} \ddot{\theta}=\varnothing \\
& \ddot{\theta}=\frac{-g}{R} \sin \theta+\omega^{2} \sin \theta \cos \theta
\end{aligned}
$$

