
Advanced Engineering Mathematics Homework One

Systems of Linear Equations : Algebra, Geometry, Row-Reduction, Determinants, Transformations

Text: 7.1-7.3, 7.5, 7.7-7.8 Lecture Slides: 2-4

Quote of Homework One

Paul Atreides: Fear is the mind-killer. Fear is the little-death that brings total obliter-

ation.

Frank Herbert : Dune (1965)

1. Matrix Multiplication

Define the commutator and anti-commutator of two square matrices to be,

[·, ·] : Cn×n × Cn×n → Cn×n, such that [A,B] = AB−BA, for all A,B ∈ Cn×n,

{·, ·} : Cn×n × Cn×n → Cn×n, such that {A,B} = AB + BA, for all A,B ∈ Cn×n,

respectively. Also define the Kronecker delta and Levi-Civita symbols to be,

δij : N× N→ {0, 1}, such that δij =

(
1, if i = j,

0, if i 6= j

εijk : (i, j, k)→ {−1, 0, 1} , such that εijk =

8><>:
1, if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1, if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0, if i = j or j = k or k = i

respectively. Also define the so-called Pauli spin-matrices (PSM) to be,

σ1 = σx =

"
0 1

1 0

#
, σ2 = σy =

"
0 −i
i 0

#
, σ3 = σz =

"
1 0

0 −1

#
.

1.1. The PSM are self-adjoint matrices. Show that σm = σh
m for m = 1, 2, 3.

1.2. The PSM are unitary matrices. Show that σ2
m = I for m = 1, 2, 3 where [I]ij = δij .

1.3. Trace and Determinant. Show that tr(σm) = 0 and det(σm) = −1 for m = 1, 2, 3.

1.4. Anti-Commutation Relations. Show that {σi, σj} = 2δijI for i = 1, 2, 3 and j = 1, 2, 3.

1.5. Commutation Relations. Show that [σi, σj ] = 2
√
−1

3X
k=1

εijkσk for i = 1, 2, 3 and j = 1, 2, 3.

2. Solutions Sets to Linear Systems of Algebraic Equations

Given,

A1 =

264 1 −3 0

−1 1 5

0 1 1

375 , A2 =

264 6 18 −4

−1 −3 8

5 15 −9

375 , A3 =

264 1 2 1

0 1 −1

1 0 3

375 , A4 =

264 1 2 3

2 4 6

3 6 9

375 , A5 =

264 5 3

−4 7

9 −2

375 ,

b1 =

264 5

2

0

375 , b2 =

264 20

4

11

375 , b3 =

264 4

1

0

375 , b4 =

264 10

20

30

375 , b5 =

264 22

20

15

375 .
2.1. Algebra. Find all solutions to Aix = bi for i = 1, 2, 3, 4, 5.

2.2. Geometry. Describe or plot the geometry formed by the linear systems and their solution sets.
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2

3. Square Coefficient Data and Matrix Inversion

Given,

A =

264 3 6 7

0 2 1

2 3 4

375 .
3.1. Matrix Inverse: Take One. Find A−1 using the Gauss-Jordan Method. (pg.317)

3.2. Matrix Inverse: Take Two. Find A−1 using the cofactor representation. (Theorem 2 pg.318)

3.3. Solutions to Linear Systems. Using A−1 find the unique solution to Ax = b = [b1 b2 b3]t.

4. Determinants

Given,

A =

264 1 a a2

1 b b2

1 c c2

375 .
4.1. Vandermonde Determinant. Show that the det(A) = (c− a)(c− b)(b− a).

4.2. Application. Determine which of the following sets of points can be uniquely interpolated by the polynomial p(t) = a0 + a1t+ a2t
2.

S1 = {(1, 12), (2, 15), (3, 16)}

S2 = {(1, 12), (1, 15), (3, 16)}

S3 = {(1, 12), (2, 15), (2, 15)}

5. Rotation Transformations in R2 and R3

Given,

A(θ) =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#
.

5.1. The Unit Circle. Show that the transformation Aî rotates î = [1 0]t counter-clockwise by an angle θ and defines a parametrization

of the unit circle. What matrix would undo this transformation?

5.2. Determinant. Show that det(A) = 1.

5.3. Orthogonality. Show that AtA = AAt = I.

5.4. Rotations in R3. Given,

R1(θ) =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775 , R2(θ) =

2664
cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

3775 R3(θ) =

2664
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

3775 .
Describe the transformations defined by each of these matrices on vectors in R3.
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