Determinants - Row-Reductions - Properties - Inverse Matrices - Volumes

1. Given the following for matrices:

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{rr}
a & b \\
k c & k d
\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{cc}
a+k c & b+k d \\
c & d
\end{array}\right] .
$$

Calculate the determinants of the previous matrices by theorem 2.2.4. In each case, state the row-operation on \mathbf{A} and describe how it effects the determinant.
2. The following questions illustrate some important properties of the determinant.
(a) The determinant is not, in general, a linear mapping. That is, det: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is not, in general, such that, $\operatorname{det}(\mathbf{A}+\mathbf{B})=\operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$. The determinant is, in general, multilinear. ${ }^{1}$ Show this for the domain $\mathbb{R}^{3 \times 3}$ by verifying that $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})+\operatorname{det}(\mathbf{C})$, where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are given as,

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & u_{1}+v_{1} \\
a_{21} & a_{22} & u_{2}+v_{2} \\
a_{31} & a_{32} & u_{3}+v_{3}
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
a_{11} & a_{12} & u_{1} \\
a_{21} & a_{22} & u_{2} \\
a_{31} & a_{32} & u_{3}
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
a_{11} & a_{12} & v_{1} \\
a_{21} & a_{22} & v_{2} \\
a_{31} & a_{32} & v_{3}
\end{array}\right]
$$

(b) Show that if \mathbf{A} is invertible, then $\operatorname{det}\left(\mathbf{A}^{-1}\right)=\frac{1}{\operatorname{det}(\mathbf{A})}$.
(c) Let \mathbf{A} and \mathbf{P} be square matrices such that \mathbf{P}^{-1} exists. Show that $\operatorname{det}\left(\mathbf{P A P} \mathbf{P}^{-1}\right)=\operatorname{det}(\mathbf{A})$.
(d) Let \mathbf{U} be a square matrix such that $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}$. Show that $\operatorname{det}(\mathbf{U})= \pm 1$.
(e) Find a formula for $\operatorname{det}(r \mathbf{A})$ where $\mathbf{A} \in \mathbb{R} n \times n$ and $r \in \mathbb{R}$.
3. Given,

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 5 & -3 \tag{1}\\
3 & -3 & 3 \\
2 & 13 & -7
\end{array}\right]
$$

(a) Find $\operatorname{det}(\mathbf{A})$ using cofactor expansion.
(b) Find $\operatorname{det}(\mathbf{A})$ using row reduction to echelon form.
4. Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

Calculate the adjugate of \mathbf{A} and using theorem 3.3 .8 calculate \mathbf{A}^{-1}.
5. The determinant has a geometric interpretation. $\operatorname{In} \mathbb{R}^{2}, \operatorname{det}(\mathbf{A})$ is the area of the parallelogram formed by the two vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, where $\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2}\right] . \operatorname{In} \mathbb{R}^{3}, \operatorname{det}(\mathbf{A})$ is the volume of the parallelepiped formed by the three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$, where $\mathbf{A}=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$.

Using the concept of volume, explain why the determinant of a 3×3 matrix \mathbf{A} is zero if and only if \mathbf{A} is not invertable.
Note: No credit will be given for the use of Theorem 3.2.4. Also, note that there are two proofs here. The forward proof should assume that $\operatorname{det}(\mathbf{A})=0$ and conclude that \mathbf{A} is singular by using the geometry formed by the column vectors. The backward proof should start assuming \mathbf{A} is singular and conclude that the parallelepiped volume is zero. The two proofs together prove the if and only if statement above.
Hint: Use the invertible matrix theorem of 2.3 and a geometric description of linearly dependent vectors in \mathbb{R}^{3}.

[^0]
[^0]: ${ }^{1}$ A multilinear map is a mathematical function of several vector variables that is linear in each variable. That is, if all columns except one are fixed, then the determinant is a linear function of that one column. See http://en.wikipedia.org/wiki/Multilinear_map for more information.

