Determinants - Row-Reductions - Properties - Inverse Matrices - Volumes

1. Given the following for matrices:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} a & b \\ kc & kd \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} a+kc & b+kd \\ c & d \end{bmatrix}.$$

Calculate the determinants of the previous matrices by theorem 2.2.4. In each case, state the row-operation on **A** and describe how it effects the determinant.

- 2. The following questions illustrate some important properties of the determinant.
 - (a) The determinant is not, in general, a linear mapping. That is, det: $\mathbb{R}^{n \times n} \to \mathbb{R}$ is **not**, in general, such that, det($\mathbf{A}+\mathbf{B}$) = det(\mathbf{A})+det(\mathbf{B}). The determinant is, in general, *multilinear*.¹ Show this for the domain $\mathbb{R}^{3\times3}$ by verifying that det(\mathbf{A}) = det(\mathbf{B}) + det(\mathbf{C}), where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are given as,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & u_1 + v_1 \\ a_{21} & a_{22} & u_2 + v_2 \\ a_{31} & a_{32} & u_3 + v_3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & u_1 \\ a_{21} & a_{22} & u_2 \\ a_{31} & a_{32} & u_3 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ a_{31} & a_{32} & u_3 \end{bmatrix}$$

(b) Show that if **A** is invertible, then $det(\mathbf{A}^{-1}) = \frac{1}{det(\mathbf{A})}$.

- (c) Let **A** and **P** be square matrices such that \mathbf{P}^{-1} exists. Show that $\det(\mathbf{P}\mathbf{A}\mathbf{P}^{-1}) = \det(\mathbf{A})$.
- (d) Let **U** be a square matrix such that $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$. Show that $\det(\mathbf{U}) = \pm 1$.
- (e) Find a formula for $\det(r\mathbf{A})$ where $\mathbf{A} \in \mathbb{R}n \times n$ and $r \in \mathbb{R}$.
- 3. Given,

$$\mathbf{A} = \begin{bmatrix} 1 & 5 & -3 \\ 3 & -3 & 3 \\ 2 & 13 & -7 \end{bmatrix}.$$
 (1)

- (a) Find $det(\mathbf{A})$ using cofactor expansion.
- (b) Find $det(\mathbf{A})$ using row reduction to echelon form.
- 4. Given,

$$\mathbf{A} = \left[\begin{array}{rrrr} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{array} \right].$$

Calculate the adjugate of **A** and using theorem 3.3.8 calculate \mathbf{A}^{-1} .

5. The determinant has a geometric interpretation. In \mathbb{R}^2 , det(**A**) is the area of the parallelogram formed by the two vectors $\mathbf{a}_1, \mathbf{a}_2$, where $\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2]$. In \mathbb{R}^3 , det(**A**) is the volume of the parallelepiped formed by the three vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, where $\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3]$.

Using the concept of volume, explain why the determinant of a 3×3 matrix **A** is zero if and only if **A** is not invertable.

Note: No credit will be given for the use of Theorem 3.2.4. Also, note that there are two proofs here. The forward proof should assume that $det(\mathbf{A}) = 0$ and conclude that \mathbf{A} is singular by using the geometry formed by the column vectors. The backward proof should start assuming \mathbf{A} is singular and conclude that the parallelepiped volume is zero. The two proofs together prove the *if and only if* statement above.

Hint: Use the invertible matrix theorem of 2.3 and a geometric description of linearly dependent vectors in \mathbb{R}^3 .

¹A multilinear map is a mathematical function of several vector variables that is linear in each variable. That is, if all columns except one are fixed, then the determinant is a linear function of that one column. See http://en.wikipedia.org/wiki/Multilinear_map for more information.