Matrix Algebra - Row Reduction - Solutions to Linear Systems

1. We known, by counterexamples, that matrix multiplication is a non-commutative binary operation. We define a commutator as a function, which takes in two matrices and returns one and is, in some sense, a measure of the binary operations lack of commutativity. We define the commutator and anti-commutation functions on matrices as,

$$
\begin{equation*}
[A, B]=A B-B A, \quad\{A, B\}=A B+B A \tag{1}
\end{equation*}
$$

The following matrices are the so-called Pauli spin matrices and have interesting commutation and anti-commutation relations and gives us fine setting to practice our matrix algebra. ${ }^{1}$

$$
\sigma_{1}=\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right], \quad \sigma_{2}=\sigma_{y}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\sigma_{z}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Using the previous definitions show the following:
(a) $\sigma_{i}^{2}=\mathbf{I}$ for $i=1,2,3 .{ }^{2}$
(b) $\left[\sigma_{i}, \sigma_{j}\right]=2 i \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k}$ for $i=1,2,3$ and $j=1,2,3 . \quad 3$
(c) $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \mathbf{I}$ for $i=1,2,3$ and $j=1,2,3 . \quad 4$
2. Given the linear system

$$
\begin{aligned}
6 x_{1}+18 x_{2}-4 x_{3} & =20 \\
-x_{1}-3 x_{2}+8 x_{3} & =4 \\
5 x_{1}+15 x_{2}-9 x_{3} & =11
\end{aligned}
$$

Determine the general solution set to the linear system and describe this set geometrically. ${ }^{5}$

[^0]3. Given the following augmented matrix
\[

\left[$$
\begin{array}{cc|c}
1 & 3 & 2 \\
3 & h & k
\end{array}
$$\right]
\]

Determine h and k such that the corresponding linear system: ${ }^{6}$
(a) Is inconsistent.
(b) Is consistent with infinitely many solutions.
(c) Is consistent with a unique solution.
4. Suppose a, b, c, and d are constants such the system

$$
\begin{aligned}
& a x_{1}+b x_{2}=0 \\
& c x_{1}+d x_{2}=0
\end{aligned}
$$

with $a \neq 0$ is consistent for all possible values of f and g. Using row reduction solve for x_{1} and x_{2} and list any constraints needed, on a, b, c, d, for unique solutions. ${ }^{7}$
5. Given the matrix \mathbf{A} and the vector \mathbf{b}.

$$
\mathbf{A}=\left[\begin{array}{rr}
5 & 3 \\
-4 & 7 \\
9 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
22 \\
20 \\
15
\end{array}\right]
$$

Are there constants x_{1} and x_{2} such that \mathbf{b} can be formed as a linear combination of the columns of \mathbf{A} ? If so then what are they? ${ }^{8}$

[^1]
[^0]: ${ }^{1}$ The Pauli spin matrices are a set of Hermitian matrices, which are unitary. They have found several uses including describing strong interaction symmetries in particle physics and representing logic gates in quantum information theory.
 ${ }^{2}$ This statement encapsulates both the symmetric unitary properties of the matrices.
 ${ }^{3}$ Here we are using the so-called Levi-Civita symbol. This symbol is used to encode the following commonly encountered information,

 $$
 \epsilon_{i j k}=\left\{\begin{array}{cc}
 1, & \text { if }(i, j, k) \text { is }(1,2,3),(2,3,1) \text { or }(3,1,2), \tag{3}\\
 -1, & \text { if }(i, j, k) \text { is }(3,2,1),(1,3,2) \text { or }(2,1,3), \\
 0, & \text { if } i=j \text { or } j=k \text { or } k=i
 \end{array}\right.
 $$

 ${ }^{4}$ Here we use the so-called Kronecker delta function, which encodes the, also common, information,

 $$
 \delta_{i j}= \begin{cases}1, & \text { if } i=j \tag{4}\\ 0, & \text { if } i \neq j\end{cases}
 $$

 ${ }^{5}$ Another way to ask this: 'Are there a set of points in \mathbb{R}^{3} where the three previous planes intersect one another? If so, then what geometric object do the collection of these points form?' I hope that it is clear that if there a solution then these points could only form a point, line, or plane, depending on the number of free-variables you find by row-reduction.

[^1]: ${ }^{6}$ Hint: You will not need to find the reduced row-echelon form. Only the row-echelon form is needed.
 ${ }^{7}$ What we are trying to do here is find conditions on the coefficients a, b, c, d that will guarantee a single solution to the system. Remember that in 1-D we require that to have a unique solution to, $a x=0, a$ must be different from zero.
 ${ }^{8}$ Another way of asking this: 'Is \mathbf{b} a linear combination of the columns of A?'

