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Self-phase modulation
Fourier split step pulse propagation
temporal solitons

C. Durfee PHGN 585
Colorado School of Mines

Pulse propagation: t/w domain

Dispersion in a system will stretch a short pulse:

2mm
glass

t (fs) T ti)
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Linear propagation is best represented in ® space:

o (0)= A(0-0,)¢*
Spectral phase
o(@)=kL="n(w >L/
w(rad/fs)

Expand @(w) in series:

¢( ) ¢0+¢1(CO wo) z¢2(w wo) +3v¢3 (O wo +4v¢4 (O wo +"’
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Effects of residual high-order phase

e Compensate linear chirp, @, only (¢s-limited) :

t (fs)
-60 -40 -20 0 20 40 60

e Compensate @, and @, (@,-limited):

Nonlinear phase shifts:
self-phase modulation

At high intensity, the refractive index can be changed noticeably:

.dA 2 9’A Typically, relative sign of y, and 3, do not allow
s Ll e : pand By

dz Z* for solitons.

SPM

Ly, = 1/70 |A|2

Input spectrum

B-integral (NL phase shift): B=vy, |A|2 L

Input pulse shap

NL frequenc

Dispersion length: L ~-Z Output spectrum and pulse shape are
h dramatically affected by dispersion.




Self-phase modulation & continuum generation

The self-phase-modulated pulse develops a phase vs. time proportional to the
input pulse intensity vs. time.

Pulse intensity
vs. time

E,(z,t) = E,(0,¢)exp| i k, n, I(¢) z‘]

The further the pulse

That is: g)(z, t) = ko n, ](l‘) z travels, the more
modulation occurs.

A flat phase vs. time yields the narrowest spectrum. If we assume the
pulse starts with a flat phase, then SPM broadens the spectrum.

This is not a small effect! A total phase variation of hundreds can occur!
A broad spectrum generated in this manner is called Continuum.

The instantaneous frequency vs. time in SPM

P(z,t) =kyzn, 1(2)

0d(z,t) — koon al(t)
ot 0T o

A 10-fs, 800-nm pulse that’s experienced self-phase modulation with a peak
magnitude of 1 radian.
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Self-phase-modulated pulse in the frequency
domain

The same 10-fs, 800-nm pulse that’s experienced self-phase modulation with a
peak magnitude of 1 radian.
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It" s easy to achieve many radians for phase delay, however.
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Note that the spectrum has broadened significantly. When SPM is very strong, it
broadens the spectrum a lot. We call this effect continuum generation.
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(a)
Low
Continua created by propagating Energy
500-fs 625nm pulses through 30 cm
of single-mode fiber. \
(b)
Medium 3
i Energy Z
The Supercontinuum Laser
Source, Alfano, ed. :
(7) 1
=2
w
[ (c)
High 2
Energy
Broadest spectrum occurs
for highest energy.
550 6‘25 700

WAVELENGTH  (nm)

Instantaneously responding n,; maximum SPM phase = 72z radians

o

. N —
Input Inten_sny T - The Super-
vs. time ‘E | continuum
(and hence 5 | Laser Source,
output phase s L Alfano, ed.
; I
vs. time) P — 8 1z 16 20

Time (psec)

Original spectrum is negligible in width compared to the output spectrum.

Output \Lasev
spectrum:

-300 -200 -100 0 100 200 300 Dw

Oscillations occur in spectrum because all frequencies occur twice and
interfere, except for inflection points, which yield maximum and minimum
frequencies.
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Continuum generation simulation

Noninstantaneously responding n,; maximum SPM phase = 72z radians

Output phase vs.
time (# input
intensity vs. time,
due to slow
response)

Output spectrum:

The Supercontinuum
Laser Source, Alfano, ed.

A¢ (normalized)
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Asymmetry in phase vs. time
yields asymmetry in spectrum.

625-nm (70 fs and 2 ps) pulses in Xe gas
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Data taken by
Corkum, et al.
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Ultraviolet continuum

4-mJ 160-fs 308-nm pulses in 40 atm of Ar; 60-cm long cell.

1074 ; E
E I ]
£ o5k 4 Lens focal
> 3 E
~ . . length
> - .
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Good quality output mode. T S

Laser Source, Alfano, ed.

UV Continuum in Air!

308 nm input pulse; weak focusing with a 1m lens.

The Super-
continuum
] Laser

. Source,

. Alfano, ed.

Signal (arbitrary units)
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314 312 310 308 306 304
Wavelength (nm)

Continuum is limited when GVD causes the pulse to spread, reducing the intensity.
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Continuum in air

Use a negatively chirped pulse to pre-compensate for the dispersion of air. Then
“temporal focusing” occurs. The self-focusing can compensate diffraction: light

bullets! Usually this only happens for pieces of the beam: filamentation, and it’ s
messy.

Conical emission from a fs beam Beam profile of a high-power beam
in air, near the critical power (~1000P_ ) after 15m. Note the

P,. multiple filamentation.
Continuum Generation:
Good news and bad news
Good news:

It broadens the spectrum, offering a useful ultrafast white-light
source and possible pulse shortening.

Bad news:

Pulse shapes are uncontrollable.

Theory is struggling to keep up with experiments.

In a bulk medium, continuum can be high-energy, but it's a
mess spatially.

In a fiber, continuum is clean, but it’ s low-energy.

In hollow fibers, things get somewhat better.

Main problem: dispersion spreads the pulse, limiting the
spectral broadening.
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Microstructure optical fiber

High-birgfringence

BERaIessly SM

LANL ! University of Bath

Microstructure optical fibers modify dispersion.

Dispersion in an air-clad fiber

Consider high-A
fiber as an air-clad
fiber:

GVD- ps/inm.km

Wavelength - microns

Jonathan Knight- U. of Bath




The continuum from
microstructure optical fiber
is ultrabroadband.

Cross section of the
microstructure fiber.

=)
S
S

Continuum

* The spectrum
extendsfron1”4OQ

100fs input pulse to ~]:500 nm and is

[ . h . . . . relatively flat (when

400 600 800 1000 1200 1400 1600 averaged over time).
Wavelength (nm)

Log Spectral intensity (arb units)

This continuum was created using unamplified Ti:Sapphire pulses.
J.K. Ranka, R.S. Windeler, and A.J. Stentz, Opt. Lett. Vol. 25, pp. 25-27, 2000

Continuum is quite beautiful!
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Few-Cycle Pulses by External Compression

Sandro De Silvestri, Mauro Nisoli, Giuseppe Sansone, Salvatore Stagira,

and Orazio Svelto

F.X. Kirtner (Ed.): Few-Cycle Laser Pulse Generation and Its Applications,

Topics Appl. Phys. 95, 137-178 (2004)

(wo/e) [[ An|F(z,y)|?dzdy
T F@ 9P dzdy

Af =

Change in propagation constant is averaged
over the mode. SPM applies to whole mode.

|2

A |F(x,)

L( U )2 n2(w) + 1

a’ Wheore (W) n?(w) —1

! nonlinear medium
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Output spectrum and pulse shape

Wavelength (nm)
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Compression of optical pulses chirped by self-phase
modulation in fibers
W. J. Tomlinson,* R. H. Stolen, and C. V. Shank
Vol. 1, No. 2/April 1984/J. Opt. Soc. Am. B 139

INTENSITY

INTENSITY

1

0.5

o

10

5

AT&T Bell Laboratories, Holmdel, New Jersey 07733

16

16

06 50~
( (a) (c)
> 40
Eoal z
@ ® 30
g & 20
£ o2 [
£ o
= { ! Z o} fIE
0.0 00
-12 -6 0 6 12 -6 -8 o 8
t/to (w-wplto
16 80
(b) (d)
121 701
8k _ eof
(2}
o af Z sol-
? a
3 O & o
v =
3.4} 8 30f
<
3
sl a 20
-2 10
el 1| L1 L1 [ |
-2 -6 6 12 -16

8 o0 8
(w-wglto

3/19/17

12



Nonlinear pulse propagation dynamics

Actual dynamics are complicated:

* The nonlinearity of self-phase modulation broadens the
spectrum in a way that is sensitive to the pulse shape

* Dispersion reshapes the pulse, changing the SPM

To accurately describe the propagation, we must
simultaneously account for dispersion and
nonlinearity

Simplest version:
Nonlinear Schroedinger equation (NLS)

Maxwell’'s Equations in a Medium

* The induced polarization, P, contains the effect of the medium:

« Sinusoidal waves of all frequencies are solutions to the wave equation
* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which
frequencies will occur.

* For linear response, P will oscillate at the same frequency as the input.

P(E)=¢,yE
* In nonlinear optics, the induced polarization is more complicated:
P(E)=¢,(x"E+xVE + y VB + )

* The nonlinear terms lead to new frequencies and phase modulation.
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Linear propagation of quasi-
monochromatic fields

Earlier we had worked with single-frequency fields, for

example:
XEAmPE E(z,t)=XE, cos(k.z—t)

Now we want to work with field with a more general
temporal shape.
— Assume linear polarization, plane waves in z-direction

For now, look at only the linear part of P:
E 19°E o’P,

07 & of 0 ar R
Group linear terms together
2 2
FE__1 oD _, I _2»
dz* 8002 ot €My

Wave equation in frequency space

Represent all signals in w space:
1 —iwt
E(z,t) = EJE(z,a))e do

1 —iot
D(z,t):EJ‘D(z,a))e do
Now we can connect D and E: D(z,0)=¢,e(0)E(z,0)

Put these expressions into the WE, do time derivatives
inside integral: o 1 3 i
a7E(z,t)=EJE(z,w)(?e de

9 E(z0)+e(0)% E(z0)=0 K (0)=¢(o)

0z* c?

Now work to get back into time domain.

3/19/17
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Field with slowly varying envelope
* We went to w space to be able to easily include dispersion
%E(z o)+ k() E(z,0)=0
* Represent field in terms of a sIowa—va{ying amplitude
E = i(kyz—gt) C. - —iot
(z,1) A(z,t)(e +cc) A(z,1) 2ﬂjA(z,a))e do
— By shift theorem:
E(z,0)=A(z,0 — 0, )"
» Put this into the wave equation:

2

87 09z

azA+2zk 94 +(k* -k} )4

o7 09z =0

(4(z0-o,) |+ (0) 420~ ,)¢™ = (?; ik 2 g2 g A] o
Z

Taylor expansion of dispersion

* Do a Taylor expansion for k(w):
Ko)=k +(0-w,)k+D D= il (w-@,)'k,  Dincludes all high-
> n! order dispersion

(@)= k)" +2kok, (0 — @)+ k(@ - @, ) + 2k, D+ 2k, (0 — @, ) D+ D’ i
sma

* Insert this expansion into the w-domain WE:

0’4 04
7 +2ka—+(k() kj)A:O

— Terms in red cancel,

azzf +2ik0Z—A+(2kok1(a)—a)o)+k12(a)—w0)2 +2kOD+2kl(a)—wO)D)A=O

z

3/19/17
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Slowly-varying envelope approx: SVEA

+ So far, we haven’t made any approximation about the
duration of the pulse (or its bandwidth)

— Assuming a carrier frequency doesn't itself introduce
approximations

» Compare magnitude of components of equation:

— In general, the envelope A(z,t) will evolve over some length scale
L (e.g. b/c of GVD): 9/9z"~1/L

9’ 9 k 9 ))- 1 o 4rm
—+2ik 1+i—t—[|4=0 — ~ 2k ~
(az'z " ’032'[ s afj] 977 I "oz’ AL

: A : L
— Soif L> 4—0 we can ignore second derivative term
T

az’z 0 aZ,

— Dropping this eliminates any counter-propagating solution: no
back-reflections included in this approximation.

SVEA % 0 2ik i[m—lijz:o

0

SVEA again

» \We still have an extra time derivative

2ik ! [1“&1]2:0

9z k, 0T
— Look at ratio: oy _dkldal, 1 v, 1
— Vg ~ Vp, in order of magnitude ky noylc o, v, o

» Timescale for change 7, ofot ~1/t,
* If weT,>>1, we can drop the time derivative.
[0)
®,T,~2—>-
T Aw

» This approximation requires small fractional bandwidth.

—>2ik0%;1=0
z

» All this says is that the pulse shape doesn’t change, but we
assumed there was no high-order dispersion.

3/19/17
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Dispersive propagation in the time
domain

» Before changing to the moving coordinate system, we had

.9 .9 L, AL . &1 (Y

[§+21k(,$+21k“k15—kl ¥+2kOD+21le§JA—O D—Z—kn(z—)

— In moving ref frame, and with SVEA, this is now:

(2ik0£,+2k0f)+2ik1f)%);l = 0—>(2ik0%+2k0f)[1+i%%D;1 =0

0

— Term in blue is small as in previous slide, so dispersive
propagation follows the equation:

.0 ~ -
[21k0§+2k0D)A =0
— For second-order dispersion only,

L ool Y 1 2y 1. & 94 1. 94
ol (oY 1 (aY_ 1, 9 _ o4
b=2, vk"(’az) —>2!k2(18t) R 37 22

Nonlinear propagation

» Polarization has a nonlinear component
BZE_LBZE:‘U I’p, P,
0z ot Yot "V o

2
P . :
« Treat p,——=*% as a source term in all previous eqns.

or’ .
~ ~ ~ . 3 ~12
PNL(Z’I):380%(3)‘A(Z’t)|2A(Z’I)el(koz_wnt) n,l = 2% ‘A|
Ny
* Working with the carrier and envelope:
13NL (Z,l‘) = ij(z’t)ei(koz—wot)
aPNL ( ~aﬁ)i(k-) ia~'(k-)
—M | jo.D+— |e 02~ Wol ——iw.| 1+ —= el 02— 0ol
or Y o 0 )P
P oY L, » T Drop red term by
%TZNL:_%Z(HQ%_J pe ) =—aPpe ™ vEA
0

3/19/17
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Nonlinear Schrodinger Equation (NLS)

azPNL 2 = ’(kol o) (3) i(koz—wqt)
Ho 3 ==H,®, p = =31,,0," X ‘A‘

i(koz—wot)

=302 \A|

Add NL contribution to RHS:

(2;’1{0%”1«05]2 302 |A|
zZ

c

( aa,mj,az_&nzz,a

+ With only 2" order term in dispersion:
Operator form

9.4, = D+N A,

94 1, 94

= k,
0z’ 12 o’

Self-steepening

Driving term for the NL propagation eqgn:

2 2
zafp=—“’°2 1+—E) [pe ’”’“’+cc]
&C &C

3 W’Ol ‘ (1+8] (IA(r,r)lzA(r,z))]A(r,ﬁe"‘“°’+c-c-

Ar,t)

0

We set up the equation for the term oscillating with exp(- iaw,t), giving the RHS

2 5 2
EEPWOLL'Y RS L :
=317 [A(1+w a,] (14| A)}A

0

3/19/17
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For just self-phase modulation (ignoring time derivatives), and no dispersion:

0 w,
ik, A= 3@ C—;|A|2 A

Convert to nonlinear index form:

3)

1
X = gnz 4nle,c I= 2n0800|A|2

) w;
2k, ETA =—2n,n,—-1A
4 c

or

d ,
LA=i=2n1A
0z c

Now work with the time derivatives on the RHS:

. 2 .
(1+’3,J —1e 2y Ly

@, @, @,

We’ Il keep the first derivative.

0 () i 0 (0] 1i 9
—A=i—"2 1+2—— [(IA)=i—> I1+2———(1A) |A
0z e nz( i , atj( )=i c nz[ " A o, Bt( )J

The second form is useful for representing the solution in the form:

A(z+h)=exp[ N |A(z)

where

N = i%n2 (1+21ia(1A)J

A, ot

Note that we can choose Ato have unitsof T ~ Sothat I=|A[

3/19/17
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Now let’ s expand the derivative:
i1 2 i1 o
——09,(|A] A)=——0,(A%A

woAf(ll ) wOA,( )

= ii(Aza,A* +2/4[*0,4)
w, A

= L(Aa,A* +24°9,A)

wO
.(DO 2 2i * *
A(z+h)=exp{zn2[|A| +(A9,A"+2A atA)]h}A(z)
c @,

For the simple case where the pulse envelope is real (no phase term),
o

A(z+h)=e <" exp[—é(AalA)h]A(z)
C

The first term is the normal SPM term,
the second redistributes power within the pulse

Self-steepening and optical shock formation
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Dispersion tends to dissipate the shock.
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