Sep. Vaibles

$$
\begin{aligned}
& V(x, y, z)=\underline{X}_{(x)}^{\underline{Y}_{(y)} \mathcal{Z}_{1}(z) \quad \text { 3-0गE }} \\
& \Psi=A \sin k y+B \cos k_{y} \\
& \overline{\bar{L}}=A^{\prime} e^{\sqrt{c_{2}} y}+B^{\prime} e^{-\sqrt{c_{2}} y} \quad \xlongequal{c_{2}>0} \\
& I=A^{\prime \prime}+B^{\prime \prime} y \\
& c_{2}=0 \\
& \nabla^{2} V=0=\underbrace{\frac{1}{\mathbb{I}} \frac{d^{2} I}{d x_{1}^{2}}}_{0}+\underbrace{\frac{1}{\Psi} \frac{d^{2} T}{\delta_{y}^{2}}+\underbrace{\frac{1}{\frac{\pi}{7}} d^{4} \tau}_{c_{3}} \underbrace{2}_{c_{3}}}_{c_{1}}
\end{aligned}
$$

$$
\stackrel{V}{\perp}(y)=A \sin \left(\frac{n \pi}{b} y\right)
$$

$$
\bar{X}=G e^{k x}+H e^{-k x}
$$

$$
V(x, y z)=\left(G e^{k x}+H e^{-k x}\right) \sin k y \quad k=\frac{n \pi}{b}
$$

\checkmark

at $x=0$ budry I

If PDE is liear $\sum_{j=1}^{\infty} v_{j}$ is abso a soln

$$
\begin{array}{r}
J(x, j z)=\sum_{n=1}^{\infty}\left(A_{n} e^{-\frac{n \pi x}{b}}+B_{n} e^{n \pi x / b}\right) \sin \left(\frac{n \pi y}{b}\right) \\
Q_{\text {determine const by bndry cond }}
\end{array}
$$

determine const by budry cond
at $x=0 \quad V(0)=V_{1}=\sum_{i}^{t}\left(A_{n}+B_{n}\right) \sin \left(\frac{n \pi y}{b}\right)$
multiply by $\sin \frac{m+\pi}{b} \not t$ integuate $o \rightarrow b$

$$
\begin{aligned}
& v_{1} \int_{0}^{b} \sin \left(\frac{m \pi y}{b}\right) d y=\sum_{n}\left(A_{n}+B_{n}\right) \int_{0}^{b} \sin \left(\frac{n \pi y}{b}\right) \sin \left(\frac{m \pi y}{b}\right) d y \\
& v_{1}\left[-\frac{b}{m \pi} \cos \left(\frac{m \pi y}{b}\right)\right]_{0}^{b}=\sum_{n}^{1}\left(A_{n}+B_{n}\right) \frac{b}{2} \delta_{n m} \delta_{n m}
\end{aligned}
$$

$$
\left.\begin{array}{rc}
\left.\begin{array}{cc}
m=o d d & \frac{2 b v_{1}}{m \pi} \\
m \text { even }
\end{array}\right\}=\left(A_{m}+B_{m}\right) b / 2
\end{array}\right] \quad A_{n}+B_{n}=\left\{\begin{array}{cc}
\frac{4 v_{1}}{n \pi} & \text { nodd } \quad \text { equ in 2mks } \\
0 & \text { neven }
\end{array}\right.
$$

OTher budry: $V(x=a, y)=\sum_{n}\left(A_{n} e^{-\frac{n \pi a}{b}}+B_{n} e^{n \pi a}\right) \sin \left(\frac{n \pi y}{b}\right)$
multiply $\sin \left(\frac{m \pi y}{y}\right) \geq$ indegate $0 \rightarrow b$

$$
\Rightarrow \quad A_{n} e^{-n \pi a / b}+B_{n} e^{n \pi / b}=\left\{\begin{array}{cl}
\frac{4 V_{2}}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

Solve for $A_{n} \frac{1}{9} B_{n}$ in too boked eqns

$$
\begin{aligned}
& A_{n}=\frac{4}{n \pi}\left(\frac{V_{1}-V_{2} e^{-n \pi a / b}}{1-e^{-2 n \pi a / b}}\right) \quad A_{n}=-B_{n} \\
& V(x, y, z)=\sum_{n=\text { odd }}^{-1}\left(A_{n} e^{-\frac{n \pi x}{b}}+B_{n} e^{\frac{n \pi x}{b}}\right) \sin \left(\frac{n \pi y}{b}\right)
\end{aligned}
$$

Derive the solution to Laplace's equation in cylindrical coordinates if there is no Φ or z dependence.

$$
\begin{aligned}
& \frac{\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial^{v}}{\partial s}\right)}{s \leftrightarrow r}+\frac{\frac{1}{c_{1}} \frac{\partial}{}_{2}^{\partial v}}{\partial \varphi^{2}}+c_{2}+c^{\frac{\partial^{2} v}{\partial z^{2}}}=0 \\
& V \text { is a function of } s \text { july } \Rightarrow \frac{\partial V}{\partial \varphi}=0=\frac{\partial V}{\partial z} \Rightarrow c_{2}=c_{3}=0 \\
& \frac{1}{s} \frac{d}{d s}(\underbrace{s \frac{d V(s)}{d s}}_{\text {cont }})=0 \\
& c_{1}+c_{2}+c_{3}=0 \\
& \Rightarrow c_{1}=0
\end{aligned}
$$

$$
\delta \frac{d v}{d s}=\frac{\text { const }}{s} \quad \int d v=\int \operatorname{con} s t \frac{d s}{s} \quad v=A \ln s+B
$$

If $V(r, \varphi)=\$(v) \Phi(\varphi) \begin{gathered}z(2) \\ (1)\end{gathered}$ then $C_{3}=0$
const $\quad C_{2} \neq 0$

$$
\begin{aligned}
& \frac{1}{s} \frac{d}{d s}\left(s \frac{d p(c) \Phi(c)}{d s}\right)+\frac{1}{s^{2}} \frac{d^{2}([(s) \text { 雨 }(e))}{d \varphi}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{R} S \frac{d}{d S}\left(S \frac{d R}{d S}\right)=C_{1} \Rightarrow S\left(\frac{d R}{d s^{2}}+\frac{d R}{d S}\right)=C_{1} R
\end{aligned}
$$

