
MATH348: SPRING 2012 - HOMEWORK 5

SIMPLE SOLUTIONS, CONSERVATION LAWS, HEAT EQUATIONS AND ALTERNATE
COORDINATES

Even your emotions had an echo in so much space.

Date: April 1, 2012.
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Abstract. Partial differential equations (PDE) relate the instantaneous rates

of change of an unknown multivariate function and typically arise when mod-

eling natural phenomenon that often, but not always, depend on space and
time. The general theory of partial differential equations is a difficult topic and

still an active area of research.1 That said, we will investigate PDE through

the eyes of separation of variables and its associated Fourier analysis. The
moral will always be, Fourier series/transform provides a very general appara-

tus that allows one to represent a ‘physically reasonable’ function defined on

a finite/infinite portion of space and, with this in mind, all we have to do is
endow the Fourier representation with suitable dynamics consistent with the

evolution defined by the PDE. Before we start this, it makes sense to consider

where a PDE might come from.
The fundamental theorem of calculus coupled with the conservation of a

quantity can be used to connect a flux to a density by the equation,

ut − f +∇ · ~φ(1)

where u is the density of the conserved quantity, ~φ is its flux and f is a
point-source function that captures any internal creation or destruction of the

quantity. We close this equation by use of a constitutive relation relating,

again, the flux to the density. This relation comes from empirical evidence.
One such relation comes to us via the second law of thermodynamics, which

says that the flux is proportional to the negative gradient of the density,

~φ = −D ~∇u(2)

where D is known as the diffusivity.2 Assuming a material with homogeneous
properties now gives the diffusion equation,

ut = D4u+ f,(3)

which models the evolution of a density, in a homogeneous medium, that obeys

the second law of thermodynamics. Now the question is, how do we solve this
PDE and what does this tell us about the behavior of solutions? The following

problems are meant to give us some ideas.

P1. Before we get into it, we show some simple solutions to PDE. The point
here is to remember our partial differentiation. Start with the given

function, take the spatial and temporal derivatives the PDE calls for
and show that the equality of the PDE is not broken by the function.

The tricky one is 1.1, which asks to think really hard about the chain

rule. We will discuss in class the physical meaning of this solution.
P2. In this problem we go back to the conservation law but only consider the

case in one-dimension of space. While, it is sensible to relate the flow

to the density by the 2nd−law, it is not the only relation one can make.
Here we assume instead φ ∝ u, which gives us a so-called transport

equation, ut ∝ ux. This equation predicts a different kind of solution.

Namely, one that moves the data around without deformation. However,
we can also think about the general equation ut = auxx+bux+cu, which

is like a diffusion equation with lower order derivative terms. It turns

out this equation can be mapped back onto the diffusion equation and
so we choose to study just ut = Duxx.

P3. Here we consider the problem outlined in class but now with different
boundary conditions. From this we learn that the boundary conditions

change the type of Fourier modes in the FS representation of the solution.
Also, we can see that the diffusion equation tries to establish an equi-
librium by averaging the initial data. This was not something we could
see when the object was uninsulated. Lastly, we introduce a source term

and outline how we can use what we learn in the homogeneous problem
to solve the inhomogeneous problem.

P4. It is asking too much to fix the background environment to a specific
value. In this problem we consider a trick that allows us to offload a
changing background to a source term. That is, if the boundary values
are not ‘standard’ then we can make them ‘standard’ at the cost of

an inhomogeneous term but we know how to solve the PDE with an
inhomogeneous term from the last problem. Yay!

P5. We now make the upgrade to multiple dimensions of space. Here I’m
asking you to build off the example in class but the moral is, for each
dimension of space you have another Fourier series ad nauseum. I meant

to assign this problem but didn’t. You can do either this problem or
problem 6. Doing both is worth extra credit.

P6. Lastly, we consider what happens to PDE when you convert to different

coordinate systems. The answer is, nothing good. Here you will use the
multivariate chain rule to represent the Laplacian in polar and spherical
coordinates.
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1. Some Solutions to common PDE

Show that the following functions are solutions to their corresponding PDE’s.

1.1. Right and Left Travelling Wave Solutions. u(x, t) = f(x−ct)+g(x+ct)
for the 1-D wave equation.

1.2. Decaying Fourier Mode. u(x, t) = e−4ω
2t sin(ωx) where c = 2 for the 1-D

heat equation.

1.3. Radius Reciprocation. u(x, y, z) =
1√

x2 + y2 + z2
for the 3-D Laplace

equation.

1.4. Driving/Forcing Affects. u(x, y) = x4 + y4 where f(x, y) = 12(x2 + y2) for
the 2-D Poisson equation.

Note: The PDE in question are,

• Laplace’s equation : 4u = 0
• Poisson’s equation : 4u = f(x, y, z)
• Heat/Diffusion Equation : ut = c24u
• Wave Equation : utt = c24u

and can be found on page 563 of Kryszig - 9th Edition.

2. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat
equation was given by,

∂u

∂t
= −κ∇ · φ = −κdiv(φ),(4)

which reduces to
∂u

∂t
= −κ∂φ

∂x
, κ ∈ R(5)

in one-dimension of space.3 In general, if the function u = u(x, t) represents the
density of a physical quantity then the function φ = φ(x, t) represents its flux. If
we assume the φ is proportional to the negative gradient of u then, from (5), we
get the one-dimensional heat/diffusion equation. 4

2.1. Transport Equation. Assume that φ is proportional to u to derive, from
(5), the convection/transport equation, ut + cux = 0 c ∈ R.

2.2. General Solution to the Transport Equation. Show that u(x, t) = f(x−
ct) is a solution to this PDE.

2.3. Diffusion-Transport Equation. If both diffusion and convection are present
in the physical system then the flux is given by, φ(x, t) = cu−dux, where c, d ∈ R+.
Derive from, (5), the convection-diffusion equation ut + αux − βuxx = 0 for some
α, β ∈ R.

1This is mostly due to the need to understand nonlinear equations, although the study of linear

equations is not terribly easy. You might remember that nonlinear ordinary differential equation
is difficult. So, you might suspect that the situation for PDE is at least as bad and probably

worse. Well, you’d be right. In a sense PDE are always worse than ODE and this is because you

can think of PDE as an infinite-dimensional generalization of ODE. That is, if the phase space of
an ODE requires a finite number of degrees of freedom then a PDE, generally, requires an infinite

number of degrees of freedom. This is bad.
2The diffusivity tells us how the physical properties of the material impede the flow. In

mathematics we just write a number or function here but this hides a lot of science related to

finding out the exact form of the diffusivity.
3When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of

steady-state linear diffusion this would be called Fick’s First Law. In discussing electricity u
could be charge density and q would be its flux.

4AKA Fick’s Second Law associated with linear non-steady-state diffusion.
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2.4. Convection-Diffusion-Decay. If there is also energy/particle loss propor-
tional to the amount present then write the PDE where you have introduced the
term λu to get the convection-diffusion-decay equation.5

2.5. General Importance of Heat/Diffusion Problems. Given that,

(6) ut = Duxx − cux − λu.

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (6) can be transformed into a heat
equation on the new variable w where α = c/(2D) and β = λ+ c2/(4D).6

3. One Dimensional Heat Equation with Insulation and Source Term

Given,

∂u

∂t
= c2

∂2u

∂x2
+ F (x, t),(7)

where x ∈ (0, L) and t ∈ (0,∞), subject to

ux(0, t) = 0, ux(L, t) = 0,(8)

and

u(x, 0) = g(x).(9)

3.1. Homogeneous Case. First let F (x, t) = 0 for all t and x. Solve the asso-
ciated PDE via separation of variables and show that limt→∞ u(x, t) = gavg =
1
L

∫ L
0
g(x)dx.

3.2. Cosine Half-Range Expansion. Let F (x, t) = e−t sin

(
2π

L
x

)
be the heat

generation function. Find the Fourier cosine half-range expansion of F .

3.3. General Solution. Using the previous result, solve forGn(t) for n = 0, 1, 2, 3, . . .

assuming that u(x, t) = G0(t) +

∞∑
n=1

cos
(nπ
L
x
)
Gn(t).

3.4. Fourier Coefficients. Assuming that g(x) =

{
2k
L x, 0 < x < L

2 ,
2k
L (L− x), L

2 < x < L
,

solve for any unknown constants associated with the general solution.

4. Time Dependent Boundary Conditions

It makes sense to consider time-dependent interface conditions. That is, (7) and
(9) subject to

u(0, t) = g(t), u(L, t) = h(t), t ∈ (0,∞)(10)

Show that this PDE transforms into:

∂w

∂t
= c2

∂2w

∂x2
− St(x, t) ,(11)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
κ

ρσ
.(12)

with boundary conditions and initial conditions,

w(0, t) = w(L, t) = 0,(13)

w(x, 0) = F (x),(14)

5The uxx term models diffusion of energy/particles while ux models convection, u models

energy/particle loss/decay. The final term should not be surprising! Wasn’t the appropriate
model for radioactive/exponential decay Y ′ = −α2Y ?

6This shows that the general PDE (6), which models a flow that displays diffusive, transport
and decay behaviors can be solved using heat equation techniques.
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where F (x) = f(x)− S(x, 0) and S(x, t) =
h(t) + g(t)

L
x+ g(t). 7

5. Heat Equation on a spatially bounded domain of R2+1

Suppose that heat is allowed to flow in an x, y−plane, of finite area, A = LxLy,
that has been insulated in the z−direction and its perimeter.

5.1. Separation of Variables. Find three ODEs consistent with the heat equa-
tion modeling the physical situation described above.

5.2. Boundary Value Problems. Write down the boundary conditions implied
by the physical situation above and solve all ODEs, with their corresponding bound-
ary conditions, given by the separation of variables above.

5.3. Fourier Synthesis. Apply superposition to the solutions of the ODE/BVPs
from the previous step to find the general solution to the heat equation. From the
general solution, show that the long-time behavior is to average the initial condition
over the plane.

5. Coordinate Systems, Multivariate Chain Rule and the Laplacian

Recall that the Laplacian, 4u = uxx + uyy + uzz, was a general term in the
heat equation in R3+1. This is especially nice in Cartesian coordinates but if
you change coordinates then the multivariate chain rule must be used to convert

the associated derivatives. For example in polar coordinates r =
√
x2 + y2 and

ur(x, y) = urrx + urry. For this reason the Laplacian changes form in cylindrical
and spherical coordinates.

5.1. Laplacian in Cylindrical Coordinates. Show that if x = r cos(θ) and
y = r sin(θ) then 4u = urr + r−1ur + r−2uθθ + uzz.

5.2. Laplacian in Spherical Coordinates. Show that if x = ρ cos(θ) sin(φ), y =
ρ sin(θ) sin(φ) and z = ρ cos(φ) then 4u = urr + 2r−1ur + r−2uφφ+ r−2 cot(φ)uφ+
r−2 csc2(φ)uθθ

(Scott Strong) Department of Applied Mathematics and Statistics, Colorado School
of Mines, Golden, CO 80401

E-mail address: sstrong@mines.edu

7A similar transformation can be found for the wave equation with inhomogeneous boundary
conditions. The moral here is that time-dependent boundary conditions can be transformed into
externally driven (AKA Forced or inhomogeneous) PDE with standard boundary conditions.
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