
PHGN 462 Homework 8 

 

1)  (From Pollack and Stump 15.2).  I like this one a lot.  Ever since Phys 200 we’ve been talking 
about the field made by an infinite current-carrying wire, but we couldn’t talk about the part where we 
actually turn on the current.  Now we can.   

Suppose that at t = 0 a constant current I is suddenly established throughout an infinite wire that lies 
on the z axis.  For all t prior, there was no current at all.  Show that the resulting electric and magnetic 
fields are: 
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Also show that after a long time, ≫ / , the magnetic field is the same as the static field of a long 
wire with constant current I.  What is the electric field for ≫ / ?  

 

Note:  The sheet current video works through an example problem that has a lot in common with this 
one. 

 

 

2)  As you may be aware, the point of particle accelerators is to accelerate charged particles.  Lately 
we’ve learned that accelerating particles radiate.  Sometimes this is a good thing:  We can make a 
radiation source for imaging or medical treatments simply by accelerating charges appropriately.  But 
sometimes it’s a bad thing.  Atom smashers try to get particles up to very high energies before doing 
the smashy, and if the particles are constantly losing energy to radiation, that doesn’t really help any. 

Particle accelerators come in linear and circular varieties, so let’s check both of those out and see how 
radiation losses work in each geometry. 

a)  For a linear accelerator, start from Lienard’s formula (eqn. 15.140 in Pollack & Stump)s and show 
that the ratio of (power radiated by the accelerated particle) to (power supplied to the accelerated 
particle) is given by: 
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Where U is the energy of the particle.  Note that relativistically we still have = , as long as we 

use the relativistic momentum, = .  Recall also that =  and that a power looks like  . 

Two identities that you might need (I needed them) are: 

=   =  

Where v and a are the particle’s speed and acceleration, and  is the Lorentz factor from special 
relativity.  If you use one or both of these, prove that they are true.  The proofs should be short, so if 
yours is getting long, you may be going off-track.   

 

b)  It looks like the size of the loss compared to the size of the gain depends on the applied force  .  

The harder we push are charged particles, the worse the losses are.  But are the losses meaningful in 
any situation we’re likely to encounter?  Suppose we’re in a highly relativistic regime, where ≈ .  

Calculate what  needs to be for the ratio  to be close to one, first for an electron, and then for a 

proton.  Express your answer in eV/m.  Comment on and make sense of what you find. 

 

c)  The results of (b) hopefully demonstrated that linear accelerators are very efficient:  Radiative 
losses just aren’t that significant in any scenario that we’re going to be able to reach anytime soon.  
The only drawback linear accelerators have is that in order to reach particle energies on the scale 
we’re shooting for these days in high energy physics, the accelerators would need to be hundreds of 
thousands of kilometers long.  This is, of course, a fairly significant drawback.  Thus, we turn to 
circular accelerators so that we can accelerate particles over arbitrary distances. 

Circular accelerators introduce a new feature:  In addition to applying linear acceleration to the 
particles (to speed them up), we have to apply centripetal acceleration to push them in a circle.  As it 
turns out, the radiative losses from the centripetal acceleration can be pretty bad.  Since we know from 
(b) that linear acceleration losses are negligible, henceforth we’ll ignore tangential accelerations and 
consider our particles to be undergoing uniform circular motion so that we can get a clear look at the 
centripetal effects. 

Again assuming highly relativistic circumstances, show that for a circular accelerator the power lost 
per distance traveled is given by: 
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This is, in effect, the extra force we’d need to apply just to overcome the centripetal portion of the 
radiation losses.   

 

d)  Assuming a particle energy of 50 GeV and an accelerator radius of 167 m, punch in numbers and 
find the energy loss per meter for an electron and for a proton.  Express your answer in eV/m (or 
MeV/m or GeV/m as appropriate).  Comment on and make sense of what you find. 



 

3)  Second peer lecture, as described in class. 

 

 

 


