Consider the one-dimensional wave equation,

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}\\
x \in(0, L), \quad t \in(0, \infty), \quad c^{2}=\frac{T}{\rho} . \tag{2}
\end{gather*}
$$

Equations (1)-(2) model the time-evolution of the displacement, $u=u(x, t)$, of an elastic medium in one-dimension. The object, of length L, is assumed to have a homogenous lateral tension T, and linear density ρ. That is, $T, \rho \in \mathbb{R}^{+}$. Define,

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x \leq L \tag{3}\\
-x+2 L, & L<x<2 L
\end{array}\right.
$$

1. Consider the one-dimensional wave equation, (1)-(2), with the boundary conditions ${ }^{1}$,

$$
\begin{equation*}
u_{x}(0, t)=0, u(2 L, t)=0 \tag{4}
\end{equation*}
$$

and initial conditions

$$
\begin{equation*}
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \tag{5}
\end{equation*}
$$

(a) Assume that the solution to (1)-(2) is such that $u(x, t)=F(x) G(t)$ and use separation of variables to find the general solution to (1)-(2), which satisfies (4)-(5). ${ }^{2}$
(b) Solve for the unknown constants assuming (3) and zero initial velocity for all points on the object.
2. Consider the one-dimensional wave equation, (1)-(2), with the boundary conditions ${ }^{3}$,

$$
\begin{equation*}
u_{x}(0, t)=0, u_{x}(2 L, t)=0, \tag{6}
\end{equation*}
$$

and initial conditions

$$
\begin{equation*}
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \tag{7}
\end{equation*}
$$

(a) Assume that the solution to (1)-(2) is such that $u(x, t)=F(x) G(t)$ and use separation of variables to find the general solution to (1)-(2), which satisfies (6)-(7). ${ }^{4} 5$
(b) Let $L=1$ and solve for the unknown constants assuming (3) and zero initial velocity for all points on the object.
3. Many applications consider traveling wave solutions, $f(x, t)=f(x-c t)$, of the sinusoidal form, $f(x, t)=$ $A \cos (k x-\omega t)$. Assume that $u(x, t)=A e^{i(k x-\omega t)}$ is a solution to the following wave-like equation: ${ }^{6}$

$$
\begin{equation*}
u_{t t}-u_{x x}+u=0 \tag{8}
\end{equation*}
$$

Show that the phase velocity, $c_{p}=\frac{\omega}{k}$, of the traveling wave solutions to (8) is given by $c_{p}= \pm \sqrt{1+k^{-2}}$. 7

[^0]4. Show that by direct substitution that the function $u(x, t)$ given by,
\[

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[u_{0}(x-c t)+u_{0}(x+c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} v_{0}(y) d y \tag{9}
\end{equation*}
$$

\]

is a solution to the one-dimensional wave equation where u_{0} and v_{0} are the initial displacement and velocity of the elastic string, respectively. ${ }^{8}$
5. Consider the non-homogenous one-dimensional wave equation,

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+F(x, t), \tag{10}\\
x \in(0, L), \tag{11}\\
t \in(0, \infty), \quad c^{2}=\frac{T}{\rho} .
\end{gather*}
$$

with boundary conditions and initial conditions,

$$
\begin{array}{r}
u(0, t)=u(L, t)=0 \\
u(x, 0)=u_{t}(x, 0)=0 \tag{13}
\end{array}
$$

Letting $F(x, t)=A \sin (\omega t)$ gives the following Fourier Series Representation of the forcing function F,

$$
\begin{equation*}
F(x, t)=\sum_{n=1}^{\infty} f_{n}(t) \sin \left(\frac{n \pi x}{L}\right), \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{n}(t)=\frac{2 A}{n \pi}\left(1-(1)^{n}\right) \sin (\omega t) . \tag{15}
\end{equation*}
$$

(a) Show that substitution of (14)-(15) into (10) gives the ODE,

$$
\begin{equation*}
G_{n}^{\prime \prime}+\left(\frac{c n \pi}{L}\right)^{2} G_{n}=\frac{2 A}{n \pi}\left(1-(-1)^{n}\right) \sin (\omega t) . \tag{16}
\end{equation*}
$$

(b) The solution to (16) is given by,

$$
\begin{equation*}
G_{n}(t)=B_{n} \cos \left(\frac{c n \pi}{L} x\right)+B_{n}^{*} \sin \left(\frac{c n \pi}{L} x\right)+G_{n}^{p}(t) \tag{17}
\end{equation*}
$$

where $B_{n}, B_{n}^{*} \in \mathbb{R}$ and $G_{n}^{p}(t)$ is the particular solution to (16).
i. If $\omega \neq c n \pi / L$ then what would the choice for $G_{n}^{p}(t)$ be, assuming you were solving for $G_{n}^{p}(t)$ using the method of undetermined coefficients? DO NOT SOLVE FOR THESE COEFFICIENTS
ii. If $\omega=c n \pi / L$ then what would the choice for $G_{n}^{p}(t)$ be, assuming you were solving for $G_{n}^{p}(t)$ using the method of undetermined coefficients? DO NOT SOLVE FOR THESE COEFFICIENTS
iii. For the latter case what is $\lim _{t \rightarrow \infty} u(x, t)$?
iv. What does this limit imply physically?

[^1]
[^0]: ${ }^{1}$ These boundary conditions imply that the object must have zero curvature at the left endpoint and zero displacement at the right endpoint.
 ${ }^{2}$ It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem of hw5 prob1.
 ${ }^{3}$ These boundary conditions imply that the object must have zero curvature at each endpoint.
 ${ }^{4}$ It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem of hw5 prob2.
 ${ }^{5}$ Remember that in this case we have nontrivial solutions for $k_{0}=0$. You should find that $G_{0}(t)=C_{1}+C_{2} t$.
 ${ }^{6}$ Here we choose to work with complex exponential functions since calculation of derivatives is less clumsy than trigonometric functions. Notice that the real-part of u is equal to f.
 ${ }^{7}$ This implies that different waves which solve (8) travel at different velocities.

[^1]: ${ }^{8}$ This is called the D'Alembert solution to the wave equation.

