June, 2011

HTC Series

Low Profile, Efficient Temperature Controllers

GENERAL DESCRIPTION

The advanced and reliable circuitry of the HTC series achieves 0.0009°C temperature stability. Its small, low profile package is ideal for designs with space constraints. The linear, PI control loop offers maximum stability while the bipolar current source has been designed for higher efficiency.

The HTC temperature controllers are easily configured for any design. Virtually any type of temperature sensor can be used with the HTC and a built in sensor bias current source simplifies use with resistive temperature sensors. The independently adjustable Proportional Gain (P) and Integrator Time Constant (I) can be modified to optimize temperature overshoot and stability.

Other features offer added flexibility. A single resistor sets the maximum output current to your load. Add a diode to operate resistive heaters with a unipolar output current. An onboard reference voltage simplifies potentiometer control of the temperature setpoint. You can also choose to operate remotely with an external setpoint voltage. Two monitor pins provide access to the temperature setpoint voltage and the actual sensor voltage.

FEATURES

- Compact Size 1.5 and 3.0 A Models
- Interfaces with Thermistors, IC Sensors, & RTDs
- Single supply operation +5 V to +12 VDC (contact factory for higher voltage operation)
- +11 V compliance with +12 V input
- Stabilities as low as 0.0009°C
- Temperature Setpoint, Output Current Limit, Sensor Bias, Proportional Gain, and Integrator Time Constant are User Adjustable
- Monitor outputs for Temperature Setpoint and Actual Temperature
- Linear Bipolar or Unipolar Output operates thermoelectrics or resistive heaters

ORDERING INFORMATION

Model	Description
HTC1500-62	1.5 A Temp Controller (for 0.062" board)
HTC3000-62	3.0 A Temp Controller (for 0.062" board)
HTC1500	1.5 A Temp Controller (for 0.031" board)
HTC3000	3.0 A Temp Controller (for 0.031" board)
PWRPAK-5V	+5 V @ 8 A Power Supply
PWRPAK-12V	+12 V @ 3 A Power Supply
HTCEVAL PCB	Evaluation Board, 0.062" thick (Includes HTC Heatsink, and thermal grease)
HTCHTSK	Heatsink for HTC
THERM-PST	Thermal grease

Figure 1

HTC Series Pin-Out, Top View

HTC1500-00400-L

HTC1500 / HTC3000 TEMPERATURE CONTROLLERS

ELECTRICAL AND OPERATING SPECIFICATIONS PAGE 3							H		
ABSOLUTE MAXIMUM RAT	S	YMBOL	VAL	UE	UNIT		<u>Č</u>		
Supply Voltage (Voltage on Pin 9 - contact factory for higher V operation)				F	+5 to	+12	Volts	DC	5
Output Current (See SOA Chart)				UT	±1.5 (HTC1500)	Amps	6	ŏ
±3.0 (HTC3000)								\rightarrow	
Power Dissipation, T _{AMBIENT} = +25	5°C (See SOA Chart)		PN	ЛАХ	9		Watts	5	白
Operating Temperature, case	· · ·		To	PR	0 to +	50	°C		ဂ္ဂ
Storage Temperature			Ts	STG	-40 to	+125	°C		ö
OPERATING PARAMETER	TEST CONDITIONS			MIN		TYP	MAX	UNITS	00
TEMPERATURE CONTROL									-
Short Term Stability (1-hr) 2	OFF ambient temperature					0.0009		°C	
Short Term Stability (1-hr) 2	ON ambient temperature					0.002		°C	P
Long Term Stability (24-br) 2	OFF ambient temperature					0.0015		°C	Ē
			_	P		PI			۲ ۲
P (Proportional Gain)				1			100		E
L (Integrator Time Constant)				0			10	Sec	Ę
Setucint vs. Actual T. Accuracy	Rev B			U		<10%		000.	Ĩ
Colpoint vs. Actuar r Accuracy	Rev C D & E			0.2		2	5	m\/	C
				0.2		2	5	IIIV	0
Current pock and SOA Chart			_	±1 /		+1 5	+16	Amno	Z
Current, peak, see SOA Chart				10.4		±1.0		Amps	על
		- 500 - 0		±2.0		±2.9	±3.0	Amps	<u>o</u>
	Full Temp. Range I _{OUT} =				V	(+ - 0.13		VOILS	-
	OUT	= 1.5 A			V	/+ - 0.75		Volts	П
	UOUT -	= 3 A			V	/+ - 1.33		Volts	ŝ
Temperature Range ©									
Current Limit Range	HTC1500					0-1500		mA	
(±2% FS Accuracy)	HTC3000					0-3000		mA	
Output Power @ contact factory	HTC1500						12	Watts	
for higher power operation	HTC3000						24	Watts	
POWER SUPPLY									
Voltage, V+ O						5	12	V	
Current, V+ supply, quiescent						200		mA	
SENSORS									
Sensor Bias Current Range 9				1μ			10m	А	
Resistive Sensor Type	Thermistors, RTDs								
IC Sensor Types O	AD590, LM335								
 If thermistor, TE module, or laser of isolated from each other. Stability quoted for a typical 10 kQ 	diode are case-common, the las	ser diode	driv	er and TE o	controlle	er power su	upplies r <i>ui</i> s	nust be	
Temperature Stability Measured?.	(http://www.teamwavelength.co	om/downlo	bads	s/notes/tn-to	c02.pdf	#page=1)	-		
User configurable with external res	sistor.								
User configurable with external capacitor.									
Compliance voltage will vary depending on power supply voltage and output current. A compliance voltage of ±10.7 V will be obtained with +12 volts input at 3 A. A compliance voltage of ± 3.7 V will be obtained with +5 V input and 3 A. +5 V operation will limit the setpoint voltage to 3.5 V, thus limiting the temperature range of the HTC. NOTE: Compliance voltage for Revision B was limited to ±8 volts for +12V input.									
6 Temperature Range depends on the physical load, sensor type, input voltage, and TE module used.									
 Output power is limited by internal power dissipation and maximum case temperature. See SOA chart to calculate internal power dissipation. Damage to the HTC will occur if case temperature exceeds 50°C. 									
 AD590 requires an external bias vi Contact factors for high excellent 	oltage and 10 k Ω resistor.								
Weight Connectors Required Heatsink Capacity Warm-up 0.34" x 2.65" x 1.6" < 1.5 oz.									

PIN DESCRIPTIONS

	DIN	EUNCTION						
			10 hotwaan ning 1 9 0 limite					
1	LIMIT- LIMIT+	Resistor value of 0 12 to 1 M12 between pins 1 & 2 limits maximum output current.						
3	PID OUT	Short pins 2 & 3 for bipolar operation.						
		Install diode for unipolar operation (see page 7, step 1 for polarity).						
4	V REF OUT	3.675 Volt Reference < 50 ppm stability (15 ppm typical)						
5	COMMON	Measurement ground. Low current return used only with pins 6, 7, & 8. Internally shorted to pin 10.						
6	ACT T MONITOR	Temperature voltage monitor. Buffered measurement of voltage across Sensor + & Sensor [1 k Ω output impedance for Revisions B & D]						
7	SET T MONITOR	Setpoint voltage monitor. If $I \ge 0$	Buffered measurement of the r Revisions B & D1	e setpoint input (pin 8).				
8	SETPOINT INPUT	Remote Setpoint voltage in	nput. Input impedance = 1 M	Ω .				
0)/+	Supply voltage input +5 V	(to ±12)/ Contact Eactory f	$0.5 \vee 01$ Selpoint $\geq V^+$.				
9 10	GND	Power Supply Cround Llas	ad with nin 9 for high ourrent	return				
10		TEC+ & TEC- supply curre	nt to the TE module With N	TC sensors connect TEC+				
12	TEC	to positivo load of TE modu	In the the the module. With N	no sensors, connect rec				
12	TEC-	of TE module.	ale. With FTC sensors, conn	lect TEC- to positive lead				
13	SENSOR+	A sensor bias current will s	ource from Sensor+ to Sens	or- if a resistor is tied				
14	SENSOR-	across R_{BIAS} + and R_{BIAS} (when using an AD590 tem	Connect a 10 k Ω resistor acro perature sensor. See page 7	oss Sensor+ & Sensor- 7, step 4.				
15	R _{PIAS} +	Resistance between pins 1	5 & 16 selects sensor currer	nt from 1 μ A to 10 mA.				
16	R _{PIAS} -	Range is 0 Ω to 1 M Ω .						
17	R _{PROP} +	Resistance between pins 1	7 & 18 selects Proportional	Gain between 1 & 100.				
18	R _{PROP} -	Range is 0 Ω to 495 k Ω .						
19	C _{INT} +	Capacitance between pins	19 & 20 sets the Integral Tin	ne Constant between				
20	C _{INT} -	0 and 10 seconds. 0 second	nds (OFF) = 1 M Ω resistor					
	1111	0.1 to 1	0 seconds = 0.1 μF to 10 μF.					
REVIS	ON HISTORY	NOTES						
CHANG	E:	REVISION B	REVISIONS C & D	REVISION E				
			(April & July 2004)	(July 2009)				
	oction							
(third dig	it indicates Revision	Wavelength Electronic HTC-1500 1.5 AMP TEMPERATURE CONTROLL IR	HTC 1500 000011133	Are imperative controllor				
Efficienc	y Increase:	V+ minus 3 to 4 V	V+ minus 0.13 to 2.3 V					
Complia	Compliance Voltage							
Setpoint	vs. Actual accuracy	10%	5 mV					
Improved	d stability of			15 ppm (typical)				
Reference	ce Voltage (pin 4)	(pin 4)						
Tempera	ture Stability:							
1-hour C	FF ambient			0.0009°C				
1-hour C	N ambient			0.002°C				
24-hour	OFF ambient			0.0015°C				

PAGE 5

SAFE OPERATING AREA & HEATSINK REQUIREMENTS

Caution:

Do not exceed the Safe Operating Area (SOA). Exceeding the SOA voids the warranty.

An online tool for calculating Safe Operating Area is available at: http://www.teamwavelength.com/support/calculator/soa/soatc.php.

To determine if the operating parameters fall within the SOA of the device, the maximum voltage drop across the controller and the maximum current must be plotted on the SOA curves.

These values are used for the example SOA determination:

V+ = 12 volts

$$V_{LOAD} = 5$$
 volts
 $I_{LOAD} = 1$ amp
These values are determined from the specifications of the TEC or resistive heater

Follow these steps:

- Determine the maximum voltage drop across the controller, V+ V_{LOAD}, and mark on the X axis. (12 volts - 5 volts = 7 volts, Point A)
- Determine the maximum current, I_{LOAD}, through the controller and mark on the Y axis: (1 amp, Point B)
- 3. Draw a horizontal line through Point B across the chart. (Line BB)
- 4. Draw a vertical line from Point A to the maximum current line indicated by Line BB.
- 5. Mark V+ on the X axis. (Point C)
- 6. Draw the Load Line from where the vertical line from point A intersects Line BB down to Point C.

This chart assumes you have appropriately heatsunk the HTC.

POWER SUPPLY AND NOISE

GROUNDING

The HTC Series Temperature Controller is a linear controller designed for stable, low noise operation. We recommend using a regulated, linear supply for optimum performance. Depending on your requirements, you may be able to use a switching power supply. [A switching power supply will affect noise and stability.]

The recommended operating voltage is between +5 V and +12 VDC. The voltage available to the thermoelectric or resistive heater is the "Compliance Voltage." Compliance voltage varies with the input voltage. A compliance voltage of ± 10.7 V will be obtained with +12 volts input at 3 A. A compliance voltage of ± 3.7 V will be obtained with +5 V input and 3 A. +5 V operation will limit the setpoint voltage to 3.5 V, thus limiting the temperature range of the HTC. Higher input voltages can be used with special consideration. For higher compliance voltage operation contact the factory to discuss your application.

[NOTE: Compliance voltage for Revision B was limited to ±8 volts for +12 V input.]

A heatsink is required to properly dissipate heat from the HTC mounting surface. Maximum internal power dissipation is 9 Watts.

Unless Earth and Instrument Ground are connected via the power supply, Instrument Ground is floating with respect to Earth Ground

Special attention to grounding will ensure safe operation. Some manufacturers package devices with one lead of the sensor or thermoelectric connected to the metal enclosure or in the case of laser diodes, the laser anode or cathode.

WARNING: Precautions should be taken not to earth ground pins 11, 12, or 13. If any of these pins are earth grounded, then pins 5, 10, and 14 must be floating with respect to earth ground.

© 2011

To Install the HTC on the Evaluation Board with HTC Heatsink

- 1. Feed the HTC pins through the large opening in the Evaluation board so that the HTC pins are on the top side of the Evaluation board and the mounting tabs are against the back side of the board.
- 2. Line up the heatsink holes behind the HTC and insert the screws through the Evaluation board and HTC unit into the tapped heatsink holes.
- 3. Line up the HTC pins on the solder pads on the Evaluation board and tighten the screws.
- Solder the HTC pins to the solder pads. NOTE: Do not exceed 700°F soldering temperature for more than 5 seconds on any pin.
- 5. If you are using a PCB that is not 0.062" thick, the HTC pins need to be bent. Clamp the pins between the HTC housing and the bend to avoid damage to the HTC.

Terminal Block

Wire your thermoelectric module (or resistive heater) and sensor via the 12-contact screw terminal connector. Connect the external setpoint voltage input here, also. Other signals are available on the PCB as well as on the terminal block: Actual and Setpoint monitors, Integrator Time Constant Capacitor, and Supply Voltage.

We recommend using a minimum of 22 AWG wire to the thermoelectric.

Configuration Switch - SW1

The Configuration Switch selects the OUTPUT MODE, LIMIT RANGE, SETPOINT INPUT, and SENSOR BIAS CURRENT. Before applying voltage to the HTC PCB, check the switch settings for proper configuration.

The FACTORY DEFAULT settings are:

5W1	_
ON↑	ION
	-
	OFF
1 2 3 4 5 6 / 8 9 10	jon

Limit Range: Lowest

(SW1:1 ON, SW1:2 OFF)

Bipolar Operation:

(SW1:3 ON, SW1:4 & 5 OFF)

Onboard Trimpot Control: (SW1:6 ON)

100µA Sensor Bias Current:

(SW1:7, 9, & 10 OFF, SW1:8 ON)

The following page details the switch settings.

HTCEVALPCB SETTINGS

LIMIT RANGE

For best results, set R_{LIM} trimpot fully clockwise (full-scale) and use current limit switches.

Switch positions 1 & 2 set the "full scale" value to one of three current ranges. Select a range that includes your maximum operating current:

HTC1500	HTC3000	SW1: 1	SW1:2
0 - 0.5 A	0 - 1 A	ON	OFF
0 - 1 A	0 - 2 A	OFF	ON
0 - 1.5 A	0 - 3 A	OFF	OFF

If you want to accurately measure the output current to the TE module, connect an ammeter in series with the TE module as described on page 8, step 8 of the datasheet. OUTPUT MODE

The HTC output can be configured for bipolar or unipolar operation. The position of switches 3, 4, and 5 determine the operating mode. See page 7, step 1 for a discussion of NTC and PTC sensors.

				setpoint is controlled.		
OUTPUT BIAS	SW1: 3	SW1: 4	SW1:5	Temperature Saturaint SW4		
Bipolar NTC/PTC	ON	OFF	OFF	Temperature Setpoint	3001.0	
Heating, Unipolar: NTC	OFF	ON	OFF	Onboard R _{SET T} Trimpot	ON	
Heating, Unipolar: PTC	OFF	OFF	ON	Remote SETPOINT INPUT	OFF	

SENSOR BIAS CURRENT

Choosing the correct bias current for your sensor is important. Based on the resistance vs. temperature characteristics of your sensor, select a bias current that gives you a voltage feedback greater than 0.25 V and 1.3 volts less than V+.

BIAS CURRENT	SW1:7	SW1:8	SW1: 9	SW1:10	Recommended for:
10 μA	ON	OFF	OFF	OFF	100 kΩ Thermistors
100 μA	OFF	ON	OFF	OFF	10 kΩ Thermistors
1 mA	OFF	OFF	ON	OFF	RTDs & LM335 IC Sensor
10 mA	OFF	OFF	OFF	ON	RTDs
0 mA	OFF	OFF	OFF	OFF	AD590

PROPORTIONAL GAIN

Begin with a proportional gain of 33 (factory default). The temperature vs. time response of your system can be optimized for overshoot and settling time by adjusting the R_{PROP} trimpot between 10 and 90. Increasing the gain will dampen the output (longer settling time, less overshoot).

For more information on PID controllers, see Technical Note TN-TC01- Optimizing Thermoelectric Temperature Control Systems (http://www.teamwavelength.com/downloads/notes/tn-tc01.pdf#page=1).

SUPPLY VOLTAGE

A DC voltage can be applied via the PWRPAK-5V input connector or the terminal block connections labeled V+ and GND. **USE ONLY ONE INPUT to supply power to the HTCPCB.**

С_{ілт}

A 1µF capacitor is mounted on the PCB as shown and will give you a one second integrator time constant. By adding capacitance across the C_{INT}^{+} and C_{INT}^{-} inputs on the terminal block, you can increase the integrator time constant. See page 8, step 6 for more information. Use only capacitors with a dissipation factor less than 1%.

For more information on PID controllers, see Technical Note TN-TC01 - Optimizing Thermoelectric Temperature Control Systems (http://www.teamwavelength.com/downloads/notes/tn-tc01.pdf#page=1).

POWER SWITCH

This switch enables or disables the DC voltage from either the PWRPAK-5V input connector or the terminal block connections labeled V+ and GND. The green LED will light when power is applied to the HTCPCB and the switch is "ON".

MONITOR + and COMMON

With a DVM connected to MONITOR + and COMMON, toggle the Measurement Select Switch to measure SET T (setpoint temperature) or ACT T (actual temperature). Alternatively, SET T and ACT T can be measured via the ACT T and SET T MONITORs (referenced to COMMON) on the terminal block.

OUTPUT ENABLE / DISABLE

The output current is enabled or disabled by toggling this switch.

PAGE 10

SETPOINT INPUT

The temperature setpoint can be

controlled by the onboard R $_{\text{SETT}}$

trimpot or with an external input

voltage on the terminal block

(SETPOINT INPUT). Switch

position 6 determines how the

PAGE 12 **OPERATION WITH RESISTIVE HEATERS** Operating the HTC with resistive heaters is very similar to operating the HTC with thermoelectric modules. Use low resistance heaters (< 25 Ω) for maximum power output. Resistances greater than 100 Ω may limit the output voltage, and therefore power, slowing down temperature changes. Set Current Limit with Operate from single +5 V trimpot or resistor. to +12 VDC power supply V+ (+5 V to +12 V) V+ I IMIT Install diode NTC sensor PTC senso (1N4148) for 10 Measure Temperature Setpoint GND (for pin 9) LIMIT -HEATING ONLY OR ≭ ¥ & Actual Temperature 6 ACT T Monitor External PID OUT Unipolar operation Voltmete SET T Monitor TEC 4 ጠ Common Resistive Heater TEC Control Temperature Setpoint with +8 V (minimum) Setpoint Input resistor, trimpot, or external voltage. Thermistor, RTD, or LM335 3.675 V REF OUT AD590 RPROP -SENSOR + Set Proportional Gain R_{Prop Gair} between 1 and 100. 18 RPROP -SENSOR <mark>≻</mark>19 RBIAS + Fixed CINT + Metal Film С OR CINT -RBIAS 16 1 MΩ 20 Set Integrator Time Constant Select R_{Sensor Bias} between 0 and 10 seconds value to optimize feedback voltage on pins 13 & 14 Install a 1 MΩ resistor to remove Follow the operating instructions for thermoelectrics on pages 7 & 8, but with these important changes to the following steps: STEP 1: Depending on your selection of NTC or PTC sensor, attach a blocking diode as shown on

- STEP 1:Depending on your selection of NTC or PTC sensor, attach a blocking diode as shown on page 7, step 1. OPERATING THE HTC IN BIPOLAR MODE WITH RESISTIVE HEATERS WILL RESULT IN THERMAL RUNAWAY, AND MAY DAMAGE THE LOAD.
- STEP 2:The output current maximum is reduced to 1 A with the HTC1500 and 2 A with the HTC3000. Calculate the LIMIT output resistance with these equations:

HTC1500
$$R_{\text{LIMIT}} = \frac{20 \text{ k}\Omega}{\frac{3.0625}{\text{ I}_{\text{LIMIT}}} - 3}$$
 HTC3000 $R_{\text{LIMIT}} = \frac{20 \text{ k}\Omega}{\frac{6.125}{\text{ I}_{\text{LIMIT}}} - 3}$

STEP 8: Attach the resistive heater to Pins 11 & 12 (TEC+ & TEC-).

Resistive Heater Voltage vs. Current for HTC3000 Revision C & Later (25°C ambient)

Heater	Vs =	= 5V	V _S = 12V		
Resistance (Ohms)	Compliance (Volts)	Max Current (Amps)	Compliance (Volts)	Max Current (Amps)	
2	4.18	1.93	-	-	
3	4.45	1.36	-	-	
4	4.57	1.10	-	-	
5	4.59	0.85	-	-	
6	4.60	0.74	11.44	1.80	
7	4.65	0.64	11.47	1.58	
8	4.69	0.57	11.56	1.40	
10	4.70	0.48	11.70	1.15	
11	4.72	0.43	11.74	1.06	
12	4.73	0.39	11.82	0.98	
14	4.76	0.34	11.88	0.84	
16	4.80	0.30	11.94	0.74	
18	4.82	0.27	11.97	0.66	

USING A CONNECTOR WITH THE HTC

The HTC leads are meant to be soldered onto a circuit board. If you want to use a connector, we recommend the following:

PAGE 13

HTC1500 / HTC3000 TEMPERATURE CONTROLLERS

HTC1500-00400-L

HTC1500/3000: PCB & HEATSINK MOUNTING

To mount the HTC Series Hybrid Temperature Controllers HTC1500 and HTC3000 to their heatsinks and optional evaluation PCBs, refer to the drawings and instructions below:

MOUNTING INSTRUCTIONS

Begin by applying thermal grease to the back of the HTC to ensure good thermal contact. We recommend Wavelength Electronics part number THERM-PST.

- 1. Feed the HTC pins through the large opening in the Evaluation board so that the HTC pins are on the top side of the Evaluation board and the mounting tabs are against the back side of the board.
- 2. Line up the heatsink holes behind the HTC and insert the screws through the Evaluation board and HTC unit into the tapped heatsink holes.
- 3. Line up the HTC pins on the solder pads on the Evaluation board and tighten the screws.
- 4. Solder the HTC pins to the solder pads. NOTE: Do not exceed 700°F soldering temperature for more than 5 seconds on any pin.

If the HTC is to be used without the evaluation PCB, apply the thermal grease as directed, line up the screw holes in the HTC and heatsink and attach with the supplied screws. Connect the HTC pins to your system by soldering them to the appropriate leads.

Solder pins to

of PCB

component side

PAGE 15

Apply thermal grease to back

of HTC

HTC1500 / HTC3000 TEMPERATURE CONTROLLERS

CERTIFICATION AND WARRANTY CERTIFICATION:

Wavelength Electronics, Inc. (Wavelength) certifies that this product met it's published specifications at the time of shipment. Wavelength further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by that organization's calibration facilities, and to the calibration facilities of other International Standards Organization members.

WARRANTY:

This Wavelength product is warranted against defects in materials and workmanship for a period of 90 days from date of shipment. During the warranty period, Wavelength will, at its option, either repair or replace products which prove to be defective.

WARRANTY SERVICE:

For warranty service or repair, this product must be returned to the factory. An RMA is required for products returned to Wavelength for warranty service. The Buyer shall prepay shipping charges to Wavelength and Wavelength shall pay shipping charges to return the product to the Buyer upon determination of defective materials or workmanship. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Wavelength from another country.

LIMITATIONS OF WARRANTY:

The warranty shall not apply to defects resulting from improper use or misuse of the product or operation outside published specifications.

No other warranty is expressed or implied. Wavelength specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES:

The remedies provided herein are the Buyer's sole and exclusive remedies. Wavelength shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

REVERSE ENGINEERING PROHIBITED:

Buyer, End-User, or Third-Party Reseller are expressly prohibited from reverse engineering, decompiling, or disassembling this product.

WAVELENGTH ELECTRONICS, INC. 51 Evergreen Drive Bozeman, Montana, 59715 phone: (406) 587-4910 Sales/Tech Support fax: (406) 587-4911 e-mail: sales@teamwavelength.com web: www.teamwavelength.com

NOTICE:

The information contained in this document is subject to change without notice. Wavelength will not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Wavelength.

SAFETY:

There are no user serviceable parts inside this product. Return the product to Wavelength for service and repair to ensure that safety features are maintained.

LIFE SUPPORT POLICY:

As a general policy, Wavelength Electronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the Wavelength product can be reasonably expected to cause failure of the life support device or to significantly affect its safety or effectiveness. Wavelength will not knowingly sell its products for use in such applications unless it receives written assurances satisfactory to Wavelength that the risks of injury or damage have been minimized, the customer assumes all such risks, and there is no product liability for Wavelength. Examples of devices considered to be life support devices are neonatal oxygen analyzers, nerve stimulators (for any use), auto transfusion devices, blood pumps, defibrillators, arrhythmia detectors and alarms, pacemakers, hemodialysis systems, peritoneal dialysis systems, ventilators of all types, and infusion pumps as well as other devices designated as "critical" by the FDA. The above are representative examples only and are not intended to be conclusive or exclusive of any other life support device.

REVISION DATE NOTES REV. H 28-Jul-09 Record ON & OFF ambient stability improvements to coincide with release of Rev. E product. REV. I 31-Aug-09 Updated links to support new website REV. J 30-Aug-10 Updated to include new THERM-PST REV. K 5-Feb-11 Added parts for 0.062" boards REV. L 25-Jun-11 Updated mechanicals for new evaluation board

REVISION HISTORY

PAGE 16