Dimension - Rank - Eigenproblems - Markov Chains - Dynamical Systems

1. Determine the eigenvalues and a basis for the eigenspace of \mathbf{A} given by,

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

2. Given,

$$
\mathbf{A}=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]
$$

Is \mathbf{A} diagonalizable? If so, then determine \mathbf{D} and \mathbf{P} associated with a diagonal decomposition $\mathbf{P D P}^{-1}$ of \mathbf{A}.
3. Prove the following statements:
(a) dim Row $\mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}=n$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
(b) Rank $\mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}^{\mathrm{T}}=m$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
(c) $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^{m}$ if and only if the equation $\mathbf{A}^{T} \mathbf{x}=\mathbf{0}$ has only the trivial solution. ${ }^{1}$
(d) The characteristic polynomial of \mathbf{A} is equal to the characteristic polynomial of $\mathbf{A}^{\mathrm{T}} .{ }^{2}$
(e) If \mathbf{A} is an invertible matrix with eigenvalue λ then λ^{-1} is an eigenvalue of \mathbf{A}^{-1}. ${ }^{3}$
(f) If \mathbf{A} is both diagonalizable and invertible, then so is \mathbf{A}^{-1}. 4
(g) If \mathbf{A} has n linearly independent eigenvectors, then so does $\mathbf{A}^{\mathrm{T}} .{ }^{5}$
4. Square matrices having columns whose entries sum to 1 are often called stochastic matrices. Those with only non-negative entries, for some power, are called regular stochastic matrices. Given a random process, with an initial state \mathbf{x}_{0}, the application of \mathbf{P} on \mathbf{x}_{0} discretely steps the process forward in time. That is $\mathbf{x}_{n+1}=\mathbf{P} \mathbf{x}_{n}=\mathbf{P}^{n} \mathbf{x}_{0}, n=1,2,3, \ldots$. If a matrix is a regular stochastic matrix then there exists a steady-state vector \mathbf{q} such that $\mathbf{P q}=\mathbf{q}$. This vector determines the long term probabilities associated with an arbitrary inital state \mathbf{x}_{0}. The sequence of states, $\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right\}$, is called a Markov Chain. Given the regular stochastic matrix:

$$
\mathbf{P}=\left[\begin{array}{ll}
.1 & .6 \\
.9 & .4
\end{array}\right]
$$

(a) Show that the steady-state vector of \mathbf{P} is $\mathbf{q}=\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]^{\mathrm{T}} \cdot{ }^{6}$
(b) Find the matrices \mathbf{D} and \mathbf{Q} such that $\mathbf{P}=\mathbf{Q D Q}^{-1}$. That is, diagonalize the matrix \mathbf{P}.
(c) Show that $\lim _{n \rightarrow \infty} \mathbf{P}^{n} \mathbf{x}_{0}=\mathbf{q}$ where $\mathbf{x}_{0}=\left[x_{1}, x_{2}\right]^{\mathrm{T}}$ is an arbitrary vector in \mathbb{R}^{2} such that $x_{1}+x_{2}=1 .{ }^{7}$
5. Given,

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right]
$$

Determine the eigenvalues and eigenfunctions associated with the system of differential equations $\frac{d \mathbf{x}}{d t}=\mathbf{A} \cdot \mathbf{x}(t)$.

[^0]
[^0]: ${ }^{1}$ For the forward direction use theorem 1.4.4 on page 43 and problem 3 b to prove that the dimension of the null space of \mathbf{A}^{T} is zero.
 ${ }^{2}$ Note that \mathbf{I} is a symmetric matrix then use rules for the transposition of a sum and determinants of transposes.
 ${ }^{3}$ Start with $\mathbf{A x}=\lambda \mathbf{x}$ and multiply on the left by \mathbf{A}^{-1}.
 ${ }^{4}$ Note that if \mathbf{D} is a diagonal matrix then \mathbf{D}^{-1} is the matrix whose diagonal elements are scalar inverses of the diagonal elements of \mathbf{D}.
 ${ }^{5}$ Use theorem 5.3.5 and the fact that if \mathbf{P} is invertible then $\left(\mathbf{P}^{\mathrm{T}}\right)^{-1}=\left(\mathbf{P}^{-1}\right)^{\mathrm{T}}$. It is also useful to note that diagonal matrices are symmetric.
 ${ }^{6}$ You could try to solve $\mathbf{P x}=\mathbf{x}$ for \mathbf{x}, but is easier to show that $\mathbf{P q}=\mathbf{q}$.
 ${ }^{7}$ Notice that $\mathbf{P}^{n}=\mathbf{Q D}^{n} \mathbf{Q}^{-1}$ allows you to replace $\lim _{n \rightarrow \infty} \mathbf{P}^{n}=\mathbf{Q} \lim _{n \rightarrow \infty} \mathbf{D}^{n} \mathbf{Q}^{-1}$, where the limit can now be calculated.

