Homework 7, Summer 2009

July 16, 2009 **Due**: July 24, 2009

Dimension - Rank - Eigenproblems - Markov Chains - Dynamical Systems

1. Determine the eigenvalues and a basis for the eigenspace of **A** given by,

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}.$$

2. Given,

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.$$

Is A diagonalizable? If so, then determine \mathbf{D} and \mathbf{P} associated with a diagonal decomposition \mathbf{PDP}^{-1} of \mathbf{A} .

- 3. Prove the following statements:
 - (a) dim Row \mathbf{A} + dim Nul $\mathbf{A} = n$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
 - (b) Rank \mathbf{A} + dim Nul $\mathbf{A}^{\mathrm{T}} = m$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
 - (c) Ax=b has a solution for each $b \in \mathbb{R}^m$ if and only if the equation $A^Tx = 0$ has only the trivial solution.¹
 - (d) The characteristic polynomial of \mathbf{A} is equal to the characteristic polynomial of \mathbf{A}^{T} .²
 - (e) If **A** is an invertible matrix with eigenvalue λ then λ^{-1} is an eigenvalue of $\mathbf{A}^{-1,3}$.
 - (f) If **A** is both diagonalizable and invertible, then so is \mathbf{A}^{-1} .⁴
 - (g) If **A** has *n* linearly independent eigenvectors, then so does \mathbf{A}^{T} . ⁵
- 4. Square matrices having columns whose entries sum to 1 are often called stochastic matrices. Those with only non-negative entries, for some power, are called *regular* stochastic matrices. Given a random process, with an initial state \mathbf{x}_0 , the application of \mathbf{P} on \mathbf{x}_0 discretely steps the process forward in time. That is $\mathbf{x}_{n+1} = \mathbf{P}\mathbf{x}_n = \mathbf{P}^n\mathbf{x}_0$, $n = 1, 2, 3, \ldots$. If a matrix is a *regular* stochastic matrix then there exists a steady-state vector \mathbf{q} such that $\mathbf{Pq=q}$. This vector determines the long term probabilities associated with an arbitrary initial state \mathbf{x}_0 . The sequence of states, $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{n+1}\}$, is called a *Markov Chain*. Given the regular stochastic matrix:

$$\mathbf{P} = \left[\begin{array}{rr} .1 & .6 \\ .9 & .4 \end{array} \right].$$

(a) Show that the steady-state vector of **P** is $\mathbf{q} = \begin{bmatrix} 2 & 3\\ \overline{5} & \overline{5} \end{bmatrix}^{\mathrm{T}}$.⁶

- (b) Find the matrices **D** and **Q** such that $\mathbf{P} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$. That is, diagonalize the matrix **P**.
- (c) Show that $\lim_{n \to \infty} \mathbf{P}^n \mathbf{x}_0 = \mathbf{q}$ where $\mathbf{x}_0 = [x_1, x_2]^T$ is an arbitrary vector in \mathbb{R}^2 such that $x_1 + x_2 = 1$.
- 5. Given,

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$

Determine the eigenvalues and eigenfunctions associated with the system of differential equations $\frac{d\mathbf{x}}{dt} = \mathbf{A} \cdot \mathbf{x}(t)$.

³Start with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and multiply on the left by \mathbf{A}^{-1} .

¹For the forward direction use theorem 1.4.4 on page 43 and problem 3b to prove that the dimension of the null space of \mathbf{A}^{T} is zero.

 $^{^{2}}$ Note that I is a symmetric matrix then use rules for the transposition of a sum and determinants of transposes.

⁴Note that if **D** is a diagonal matrix then \mathbf{D}^{-1} is the matrix whose diagonal elements are scalar inverses of the diagonal elements of **D**.

⁵Use theorem 5.3.5 and the fact that if **P** is invertible then $(\mathbf{P}^{T})^{-1} = (\mathbf{P}^{-1})^{T}$. It is also useful to note that diagonal matrices are symmetric. ⁶You could try to solve $\mathbf{P}\mathbf{x} = \mathbf{x}$ for \mathbf{x} , but is easier to show that $\mathbf{P}\mathbf{q} = \mathbf{q}$.

⁷Notice that $\mathbf{P}^n = \mathbf{Q}\mathbf{D}^n\mathbf{Q}^{-1}$ allows you to replace $\lim_{n \to \infty} \mathbf{P}^n = \mathbf{Q} \lim_{n \to \infty} \mathbf{D}^n \mathbf{Q}^{-1}$, where the limit can now be calculated.