1.1.6 Following is a statement of a theorem which can be proven using calculus or precalculus mathematics. For this theorem, a, b, and c are real numbers.

Theorem If
$$f$$
 is a quadratic function of the form $f(x) = ax^2 + bx + c$ and $a < 0$, then the function f has a maximum value when $x = \frac{-b}{2a}$.

Using only this theorem, what can be concluded about the functions given by the following formulas?

1.
$$g(x) = -8x^2 + 5x - 2$$

2.
$$f(x) = -4x^2 - 2x + 7$$

3.
$$F(x) = -x^4 + x^3 + 9$$

1.1.7 Following is a statement of a theorem which can be proven using the quadratic formula. For this theorem, a, b, and c are real numbers.

Theorem If
$$f$$
 is a quadratic function of the form $f(x) = ax^2 + bx + c$ and $ac < 0$, then the function f has two x -intercepts.

Using only this theorem, what can be concluded about the functions given by the following formulas?

1.
$$g(x) = -8x^2 + 5x - 2$$

2.
$$f(x) = -4x^2 - 2x + 7$$

3.
$$F(x) = -x^4 + x^3 + 9$$

1.1.8 Following is a statement of a theorem about certain cubic equations. For this theorem, b represents a real number.

Theorem A If f is a cubic function of the form $f(x) = x^3 - x + b$ and b > 1, then the function f has exactly one x-intercept.

Following is another theorem about x-intercepts of functions:

Theorem B If f and g are functions with $g(x) = k \cdot f(x)$ where k is a nonzero real number, then f and g have exactly the same x-intercepts.

Using only these two theorems and some simple algebraic manipulations, what can be concluded about the functions given by the following formulas?

1.
$$f(x) = x^3 - x + 7$$

2.
$$r(x) = x^4 - x + 11$$

3.
$$F(x) = 2x^3 - 2x + 7$$

- **1.2.4** Write a complete proof for the following statement:
 - **a.** If m is an even integer, then 5m + 7 is an odd integer.
- **1.2.5** Write a complete proof for the following statement:
 - **b.** If m is an odd integer, then $3m^2 + 7m + 12$ is an even integer.

- **2.2.6** Prove the logical equivalency, $[P \lor Q) \to R] \equiv (P \to R) \land (Q \to R)$.
- 2.2.12 Let x be a real number. Consider the following conditional statement:

If
$$x^3 - x = 2x^2 + 6$$
, then $x = -2$ or $x = 3$

Which of the following statements have the same meaning as this conditional statement and which ones are negations of this conditions statement? Explain each conclusion.

(a) If
$$x \neq -2$$
 and $x \neq 3$, then $x^3 - x \neq 2x^2 + 6$

(b) If
$$x = -2$$
 or $x = 3$, then $x^3 - x = 2x^2 + 6$

(c) If
$$x \neq -2$$
 or $x \neq 3$, then $x^3 - x \neq 2x^2 + 6$

(d) If
$$x^3 - x = 2x^2 + 6$$
 and $x \neq -2$, then $x = 3$

(e) If
$$x^3 - x = 2x^2 + 6$$
 or $x \neq -2$, then $x = 3$

(f)
$$x^3 - x = 2x^2 + 6$$
, and $x \neq -2$, and $x \neq 3$

(g)
$$x^3 - x \neq 2x^2 + 6$$
 or $x = -2$ or $x = 3$