
MATH348: LINEAR PDE WITH PERIODIC BOUNDARY

CONDITIONS

All I know is that to me you look like you’re lots of fun.

1. Introduction

Notice that the following equation defines an eigenvalue problem,

d2

dx2
X = −λX,(1)

where −λ is the eigenvalue and X is the eigenfunction. From our boundary value
problems we found the following eigenvalue/eigenfunction pairs.

X(0) = 0, X(L) = 0 =⇒ Xn = sin(
√
λnx), λn =

n2π2

L
, n = 1, 2, 3, . . . ,

X ′(0) = 0, X ′(L) = 0 =⇒ Xn = cos(
√
λnx), λn =

n2π2

L
, n = 0, 1, 2 . . . ,

X(0) = 0, X ′(L) = 0 =⇒ Xn = sin(
√
λnx), λn =

(2n− 1)2πL

2L
, n = 1, 2, 3, . . . ,

X ′(0) = 0, X(L) = 0 =⇒ Xn = cos(
√
λnx), λn =

(2n− 1)2πL

2L
, n = 1, 2, 3, . . . ,

If instead of these boundary conditions we might consider the following for a
2L−unit object,

X(−L) = 0, X(L) = 0, and X ′(L) = 0, X ′(L) = 0, =⇒

=⇒ Xn = sin(
√
λnx), and Xn = cos(

√
λnx), λn =

n2π2

L
, n = 0, 1, 2, . . . ,

which says that the solution to the eigenproblem must be a periodic function.
Physically one could think of this as heat flow on a ring. Mathematically, we have
more than one function that solves the problem for each non-zero eigenvalue, which
is to say that each non-zero eigenvalue is repeated once. Regardless, the matter of
importance here is that these functions obey the following integrals,∫ b

−a
cos
(√

λnx
)

cos
(√

λmx
)
dx = Lδnm,(2) ∫ b

−a
sin
(√

λnx
)

sin
(√

λmx
)
dx = Lδnm,(3) ∫ b

−a
sin
(√

λnx
)

cos
(√

λmx
)
dx = 0,(4)

where b − a = 2L and
√
λn = nπ/L such that n = 1, 2, 3, . . . . We take this to

mean that the eigenfunctions of the problem satisfy orthogonality conditions. To
see what we mean by this, we consider the following problem.

Date: October 2, 2012.

1



2 MATH348: LINEAR PDE WITH PERIODIC BOUNDARY CONDITIONS

2. Heat Equation on a Lattice

The initial-boundary value problem,

∂u

∂t
= c2

∂2u

∂x2
, x ∈ (0, L), t ∈ (0,∞),(5)

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t),(6)

u(x, 0) = f(x).(7)

is known as the diffusion equation and models the flow of a conserved density on a
ring with circumference 2L. The constant c2 is known as the diffusivity constant and
contains the material properties of a conserved density that must obey the second-
law of thermodynamics. The diffusivity constant measures how easily the material
permits stuff to flow through it. If u is a thermal energy density, temperature,
then we call this the heat equation. In this case, the boundary conditions say that
the temperature on the left must be equivalent to that on the right. So, we could
think of allowing heat to flow on a circle and asking what are the dynamics of the
temperature on the circle. Regardless, we treat this through separation of variables
to get,

u(x, t) = a0 +

∞∑
n=1

an cos
(√

λnx
)
e−λnc

2t + bn sin
(√

λnx
)
e−λnc

2t(8)

Now, if we state the solution at the initial time we find,

a0 =
1

2L

∫ L

−L
u(x, 0)dx(9)

an =
1

L

∫ L

−L
u(x, 0) cos

(√
λnx

)
dx(10)

bn =
1

L

∫ L

−L
u(x, 0) sin

(√
λnx

)
dx(11)

(12)

These Fourier coefficients define the shape of the temperature at time zero and
the heat equation evolves this shape through the Fourier series solution Eq. (8).
Mathematically we could say that at each point in time the solution to the PDE
exists in an infinite-dimensional phase space, whose basis vectors are the orthogonal
trigonometric functions. We again note the following interesting limit,

lim
t→∞

u(x, t) = uavg(x, 0).(13)

3. Conclusions

My point here is that the predicted dynamics are pretty simple and expected of
our physical intuition of how heat flow should behave. The difficulty is in under-
standing the meaning of the series solution for any point in time. That is, we care
to understand the meaning of

f(x) = a0 +

∞∑
n=1

an cos
(√

λnx
)

+ bn sin
(√

λnx
)
,(14)
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which is known as a Fourier series. Noting the following formulae,

2 cos(x) = eix + e−ix,(15)

2i sin(x) = eix − e−ix,(16)

which follows from Euler’s formulae, allows us to re-write the real Fourier series
above in a complex form,

f(x) =

∞∑
n=−∞

c
(√

λn

)
ei
√
λnx,(17)

c
(√

λn

)
=

1

2L

∫ L

−L
f(x)e−i

√
λnxdx.(18)

This is the form we will study. The real form is particularly useful when working
with PDE but when not considering PDE, the compactness of the complex form
shines.

4. Things to Do

This PDE brings together many of the ideas from our previous work and centers
our attention on the underlying concept of a series of trigonometric functions, known
as a Fourier series. The following list are action items for the above discussion.

1. Derive Eq. (8) from Eq. (5) – (7).
2. Using Eq. (2)–(4), derive Eq. (9)–(11).
3. Using Eq. (15)–(16), derive Eq. (17)–(18) from Eq. (17) and (9)–(11).
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