2.3 + LINEAR POLARIZATION
We then have

S=E; XxH,cos® (k- r— wt) (2.20)

for the instantaneous value of the Poynting vector. Since the average
value of the cosine squared is just %, then for the average value of the
Poynting vector, we can write

(S) =1 E, x H, @.21)

(If the complex exponential form of the wave functions for E and H is
used, the average Poynting flux can be expressed as i E, X Hf. See
Problem 2.4.)

Since the wave vector k is perpendicular to both E and H, it has
the same direction as the Poynting vector. Consequently, an alterna-
tive expression for the average Poynting flux is

() =1%=14h (222)
in which fi is a unit vector in the direction of propagation and / is the
magnitude of the average Poynting flux. The quantity / is called the
irradiance.® It is given by

P o, == 2.23)

2 (IEENi] 220 0
The last step follows from the relations between the magnitudes of
the electric and magnetic vectors developed in the previous section.
Thus the rate of flow of energy is proportional to the square of the
amplitude of the electric field. In isotropic media the direction of the

_energy flow is specified by the direction of § and is the same as the
direction of the wave vector k. (In nonisotropic media, for example
crystals, S and k are not always in the same direction. This will be
'scussed later in Chapter 6.)

Linear Polarization

sider a plane harmonic electromagnetic wave for which the fields
d H are given by the expressions

E=E,expi(kr— wt) (2.24)
H=Hyexpik - r— wt) (2.25)
amplitudes E, and H, are constant real vectors, the wave is said

inearly polarized or plane polarized. We know from the theory

times the word infensity is used for I , but this is not technically correct (see

)
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Figure 2.2. Fields in a plane wave, linearly polarized.

of the previous section that the fields E and H are mutually perpendic-
ular. It is traditional in optics to designate the direction of the electric
field as the direction of polarization. Figure 2.2 shows a diagram of
the fields in a plane, linearly polarized wave.

In the case of natural, or so-called unpolarized, light the instan-
taneous polarization fluctuates rapidly in a random manner. A linear
polarizer is 2 device that produces linearly polarized light from unpo-
larized light. There are several kinds of linear polarizers. The most ef-
ficient ones are those that are based on the principle of double refrac-
tion, to be treated in Chapter 6. Another type makes use of the
phenomenon of anisotropic optical absorption, Or dichroism, which
means that one component of polarization is more strongly absorbed
than the other. The natural crystal tourmaline 18 dichroic and can be
used to make a polarizer, although it is not very efficient. A familiar
commercial product is Polaroid, developed by Edwin Land. It con-
sists of a thin layer of parallel needlelike crystals that are highly
dichroic. The layer is embedded in a plastic sheet which can be cut
and bent.

The transmission axis of such a polarizer defines the direction of
the electric field vector for a light wave that is transmitted with little =
or no loss. A light wave whose electric vector is at right angles to the |
{ransmission axis is absorbed or attenuated. An ideal polarizer is on¢
that is completely transparent to light linearly polarized in the direc-
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tion of the transmission axis, and completely opaque to light polarized
in the orthogonal direction to the transmission axis.

Consider the case of unpolarized light incident on an ideal linear
polarizer. Now the instantaneous electric field E can always be re-
solved into two mutually perpendicular components, E; and E,,
(Figure 2.3), where E, is along the transmission axis of the polarizer.

E; (Incident wave)

(Transmitted Transmission axis
wave) of polarizer

_> —— _...‘;3,

E,

Figure 2.3. Relationship between the incident and the transmitted fields for a
linear polarizer.

If E makes an angle # with the transmission axis, then the magnitude
of the transmitted field is

E,=FEcosf

The transmitted intensity I,, being proportional to the square of the
field, is therefore given by

I,=1 cos®f

re [ is the intensity of the incident beam. For unpolarized light all
values of 0 occur with equal probability. Therefore, the transmission
r of an ideal linear polarizer for unpolarized light is just the
rage value of cos? § namely, &

ial Polarization Light that is partially polarized can be con-
red to be a mixture of polarized and unpolarized light. The degree
olarization in this case is defined as the fraction of the total inten-
at is polarized:

P = degree of polarization = =l (2.26)
]DOI =t ILIHDO]

as an exercise to show that for partial linear polarization
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=l

p— max mir

z "max e !m'm an
where fmax and Luin refer to the intensity of the light transmitted
through a linear polarizer when it is turned through the complete
range of 360 degrees.

Scattering and Polarization When light propagates through a medium
other than a vacuum, the electric field of the light wave induces 0s-
cillating electric dipoies in the constituent atoms and molecules of the
medium. It is these induced dipoles that are mainly responsible tor
the optical properties of a given substance, that is, refraction, absorp-
tion, and so on. This subject will be ireated later in Chapter 6. In ad-
dition to affecting the propagation of light waves, the induced dipoles
can also scatter the light in yarious directions. This molecular scat-
tering (as distinguished from scattering by suspended particles such as
dust) was investigated by Lord Rayleigh who showed that, theoreti-
cally, the fraction of light scattered by gas molecules should be
proportional o the fourth power of the light frequency. 0T, equiva-
lenily, to the inverse fourth power of the wavelength. This accounts
for the blue color of the sky since the shorter wavelengths (blue
region of the spectium) are scattered more than the longer wave-
tengths (red region).?

In addition to the wavelength dependence of light scattering, there
is also a polarization effect. This comes about from the directional
radiation pattern of an oscillating electric dipole. The maximum radia-
tion is emitted at right angles to the dipole axis, and no radiation is
emitted along the direction of the axis. Furthermore the radiation is
linearly polarized along the direction of the dipole axis. Consider
the case of light that is scatiered through an angle of 90 degrees.
The electric vector of the scattered wave will be at right angles t0
the direction of the incident wave, as shown in Figure 2.4, and so
the scattered light is linearly polarized. The polarization of the light of
the blue sky is easily observed with a piece of Polaroid. The maxi-
mum amount of polarization 1s found in a direction 90 degrees
from the direction of the sun. Measurements show that the degree
of polarization can be greater than 50 percent.

2.4 Circular and Elliptic Polarization

Let us return temporarily 0 the real representation for electromag
netic waves. Consider the special case of two linearly polarized
s Actually, the sky would appear violet rather than blue were it not for the fact that =

the color sensitivity of the eye drops off sharply at the violet end of the spectrum and
also that the energy in the solar spectrum diminishes there. -




2.4 - CIRCULAR AND ELLIPTIC POLARIZATION

Polarized
scattered
wave

Transmitted
wave

(unpolarized) = e

e
e
Incident
== wave
(unpolarized)
Polarized

scattered
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Figure 2.4. [Illustrating polarization in the molecular scattering of light. The
E vectors for the incident and scattered waves are indicated.

waves of the same amplitude E, polarized orthogonally to each other.
Further, suppose the waves have a phase difference of w/2. We
choose coordinate axes such that the electric vectors of the two
waves are in the x and y directions, respectively. Accordingly, the
component electric fields are

iE, cos (kz — wt)
JE, sin (kz — wt)

he total electric field E is the vector sum of the two component
_elds, namely,

E =E, [i cos (kz — wt) + § sin (kz — wt)] (2.28)

w the above expression is a perfectly good solution of the wave
uation. It can be interpreted as a single wave in which the electric
r at a given point is constant in magnitude but rotates with
ular frequency w. This type of wave is said to be circularly po-
zed. A drawing showing the electric field and associated magnetic
of circularly polarized waves is shown in Figure 2.5.

he signs of the terms in Equation (2.28) are such that the expres-
presents clockwise rotation of the electric vector af a given
n space when viewed against the direction of propagation.
a given instant in time, the field vectors describe right-
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(a) (b)

s for right circularly polarized light.

Figure 2.5. Flectric and magnetic vectol
t in time; (b) rotation of the vectors

(a) Vectors at a given instan
at a given position in space.

handed spirals as illustrated in Figure 2.5. Such a wave is said to be
right circularly polarized.
If the sign of the second term is changed, then the sense of rota-
n is changed. In this case the rotation is counterclockwise at a
given point in space when viewed against the direction of propaga-
tion, and, at a given instant in time the fields describe left-handed
spirals. The wave is then called left circularly polarized.

1t should perhaps be pointed out here that if one “‘rides along”
with the wave, then the field vectors do not change in either direction
or magnitude, because the quantity kz—o! remains constant. This is
true for any type of polarization.

Let us now return to the complex notation. The electric field for a
circularly polarized wave can be written in complex form as

tio

E = iE, exp ikz — wt) + SE exp itkz — wt = m[2) @
or, by employing the identity €'™* = i, we call write

E = E,( = ij) exp itke — o1) 2.30)
It is easy to verify that the real part of the above expression is &
precisely that of Equation (2.28) where, however, the minus sign muSi_
be used to represent right circular polarization and the plus sign for ¢

left circular polarization.
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The reader is reminded here that if one uses the wave function
expi(wt — kz)rather than exp i (kz — wt), then the opposite sign conven-
tion applies.

Elliptic Polarization If the component (real) fields are not of the same
amplitude, say 1E, cos (kz — wt) and JE,’ sin (kz — wt) where E, # E,’,
the resultant electric vector, at a given point in space, rotates and also
changes in magnitude in such a manner that the end of the vector
describes an ellipse as illustrated in Figure 2.6. In this case the wave
is said to be elliptically polarized.

{a) (h)

igure 2.6. Electric and magnetic vectors for right elliptically polarized light.
(a) Vectors at a given instant in time; (b) at a given position in
space.

Is sometimes convenient to employ a complex vector amplitude
defined as follows:

E, =iE, + iJE,’ @.31)
orresponding wave function is
E =E,; exp i(kz — wt) (2.32)

Pression can represent any type of polarization. Thus if E, is
have linear polarization, whereas if it is complex, we have
Olarization. In the special case of circular polarization the
maginary parts of E, are equal.
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Quarter-Wave Plate Circularly polarized light can be produced by in-
troducing a phase shift of /2 between twWo orthogonal components of
linearly polarized light. One device for doing this is known as a
quarter-wave plate. These plates are made of doubly refracn'n'g trans-
parent crystals, such as calcite or mica.* Doubly refracting crystals
have the property that the index of refraction differs for different
directions of polarization. It is possible to cut a doubly refracting
crystal into slabs in such a way that an axis of maximum index 7y (the
slow axis) and an axis of minimum index n, (the fast axis) both lie at
right angles to on¢ another in the plane of the slab. If the slab
thickness is d, then the optical thickness is nd for light polarized in
the direction of the slow axis and nd for light polarized in the direc-

Incident
unpolarized light

Linear polarizer .

Transmission axis
at45°

Linearly
polarized

light /

Emergent left, circularly
polarized light

Figure 2.7. Arrangement for producing circularly polarized light.

1 The optics of crystals will be treated in detail in Chapter 6.
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tion of the fast axis. For a quarter-wave plate, d is chosen to make the
difference n,d — n,d equal to one-quarter wavelength, so that & is
given by the equation

Ay

S

(2.33)
in which A is the vacuum wavelength.

The physical arrangement for producing circularly polarized light
is shown in Figure 2.7. Incident unpolarized light is made linearly
polarized by means of a linear polarizer such as a sheet of Polaroid.
The quarter-wave plate is placed in the beam of linearly polarized
light. The orientation of the quarter-wave plate is defined by the angle
0 between the transmission axis of the Polaroid and the fast axis of
the quarter-wave plate. By choosing @ to be 45 degrees, the light en-
tering the quarter-wave plate can be resolved into two orthogonal
linearly polarized components of equal amplitude and equal phase.
On emerging from the quarter-wave plate, these two components are
out of phase by 7/2. Hence the emerging light is circularly polarized.

The sense of rotation of the circularly polarized light depends on
the value of 0 and can be reversed by rotating the quarter-wave plate
through an angle of 90 degrees so that ¢ is 135 degrees. If # is any
value other than =45 degrees or =135 degrees, the polarization of the
emerging light will be elliptic rather than circular.

2.5 Matrix Representation of Polarization.
The Jones Calculus

The complex vector amplitude given in the preceding section, Equa-
tion (2.31), is not the most general expression, because it was as-
sumed that the x component was real and the y component was
aginary. A more general way of expressing the complex amplitude
a plane harmonic wave is

E, =iE,; + JE, (2.34)

re £, and E,, can both be complex. Accordingly, they can be
en in exponential form as

oz = |Eoy| €' (2.35)
Eoy = |Eyy| e (2.36)

Onvenient notation for the above pair of complex amplitudes is the
llowing matrix known as the Jones vector:

on] [iEo.rf s ]
= 2 (2.37)
[Eﬁy [EOy| 7]
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The normalized form of the Jones vector is obtained by dividing by
the square root of the sum of the squares of the two moduli, namely
(| Eoz|? + | Eou®" A useful but not necessarily normalized form is ob-
tained by factoring out any common factor that results in the simplest

expression. For example, f} lSA [{1}] represents a wave linearly

polarized in the x direction, and [g]:A [ﬂ 4 wave linearly po-

larized in the y direction. The vector {’j } =A “] represents a wave

that is linearly polarized at 45 degrees relative to the x axis. Circular
polarization is represented by Ll] for left circular polarization, and

[_11} for right circular polarization.

One of the applications of the Jones notation is calculating the
result of adding two or more waves of given polarizations. The result
is obtained simply by adding the Jones vectors. As an example, sup-
pose we want 10 know the result of adding two waves of equal ampli-
tude, one being right circularly polarized, the other left circularly
polarized. The calculation by means of the Jones vectors proceeds as

T R-R-el

The last expression shows that the resultant wave is linearly polarized
in the x direction and its amplitude is twice that of either of the
circular components.

Another use of the matrix notation is that of computing the effect
of inserting a linear optical element, or a train of such elements, into a
beam of light of given polarization. The optical elements are repre-
sented by 2 X 2 matrices called Jones matrices. The types of optical
devices that can be so represented include linear polarizers, circular
polarizers, phase retarders (quarter-wave plates, and so forth), iso-
tropic phase changers, and isotropic absorbers. We give, without
proof, the matrices for several optical elements in Table 2.1 [39].

The matrices are used as follows. Let the vector of the incident

light be [’;] and the vector of the emerging light be [’;,] Then

A AR

where [33} is the Jones matrix of the optical element. If light is sent
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Table 2.1. JoNES MATRICES FOR SOME LINEAR OPTICAL ELEMENTS

Optical Element. Jones Matrix
= o ; 3 e
I'ransmission axis horizontal 0 0
: 2 . S 5 : 0 0
Linear polarizer < Transmission axis vertical 01

Transmission axis at +=45°

T |
(=gt
I+

i+
—_—

Fast axis vertical [i 0 ]
0 —i
Quarter-wave plate { Fast axis horizontal [(]) ?J
Fast axis at +457 =l [ ] :tj]
= VIl o
: Fast axis either vertical {] 0]
Haltyayeie {or horizontal 0 =1
.lw 0 g
Isotropic phase retarder [?0 = ‘-"J
' Jthr
Relative phase changer [90 e?‘}
: I 1=
Right 2 [__{, I]
Circular polarizer = :
=il
Left 5 L_ J

Note: Normalization factors are included in the table. These factors are necessary
or energy considerations only and can be omitted in calculations concerned primarily
ith type of polarization. Also, the signs of all matrix elements containing the factor i
uld be changed if one uses the wave function exp i(wt — kz) rather than exp i(kz — wr).

ough a train of optical elements, then the result is given by matrix

) t?plication:
an byl . [a bz]{al bl][A]—[A’} 2.39)
[Crx dn] I:C'.!. dyJle, dy B ~ B (

lustrate, suppose a quarter-wave plate is inserted into a beam of

y polarized light as shown in Figure 2.6. Here the incoming
s polarized at 45 degrees with respect to the horizontal (x axis),

t its vector, aside from an amplitude factor, is [ﬂ From the
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table, the Jones matrix for a quarter-wave plate with the fast-axis

horizontal is [10 ?] The vector of the emerging beam is then given

el (i)
0i |11 i
The emergent light is therefore left circularly polarized.
It should be noted that the Jones calculus is of use only for com- |

puting results with light that is initially polarized in some way- There !
is no Jones vector representation for unpolarized light.

by

Orthogonal Polarization Two waves whose states of polarization are
represented by the complex vector amplitudes E, and E, are said to
be orthogonally polarized if

El‘Eg"_—O

where the asterisk denotes the complex conjugate.

For linearly polarized light, orthogonality merely means that the
fields are polarized at right angles to one another. In the case of
circular polarization it is readily seen that right circular and left
circular polarizations are mutually orthogonal states. But, there is a
corresponding orthogonal polarization for any type of polarization.

In terms of Jones veclors it is easy to verify that [’;‘] and [’;2]
1 2
are orthogonal if

AAf + BB =0 (2.40)

Thus, for example, E] and [—-12;'] represent a particular pair of

orthogonal states of elliptic polarization. These are shown in Figure
2.8.

It is instructive to note that light of arbitrary polarization can
always be resolved into two orthogonal components. Thus resolution
into linear components is written

[4]=+[o]+= (']

and into circular components is written

(4]-Lusm[L]+5a-m[]
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il i
|

(a)
(b)
[
i (e)

Figure 2.8. Illustrations of some Jones vectors.

Eigenvectors of Jones Matrices. An eigenvector of any matrix is
defined as a particular vector which, when multiplied by the matrix,
. gives the same vector within a constant factor. In the Jones calculus

his can be written
— =

le constant A\, which may be real or complex, is called the
nvalue.
hysically, an eigenvector of a given Jones matrix represents a
cular polarization of a wave which, upon passing through the op-
element in question, emerges with the same polarization as when
tered. However, depending on the value of A, the amplitude and
ase may change. If we write A = |A|e™, then |A| is the amplitude
€, and ¥ is the phase change.

Problem of finding the eigenvalues and the corresponding
ectors of a 2X2 matrix is quite simple. The matrix equation

3
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above can be written as

a— A b AT
RSN R

Now in order that a nontrivial solution exists, namely one in which A
and B are not both zero, the determinant of the matrix must vanish

a—A b

c d— A\
This is a quadratic equation in A, known as the secular equation.
Upon expanding the determinant we get

(@ —Md—N) —bc= 0

=0 (2.42)

whose roots A, and A, are the eigenvalues. To each root there is a cor-
responding eigenvector. These can be found by noting that the matrix
equation (2.41) is equivalent to the two algebraic equations

(@a—N)A+bB=0 cA+{(d—NB=0 (2.43)
The ratio of 4 to B, corresponding to a given eigenvalue of A, can be

found by substitution of A; or A, into either equation.
For example, from the table of Jones matrices, a quarter-wave

plate with fast-axis horizontal has the Jones matrix [ ]0 _? ] The secular

equation is then
(1 —Ni—N=0
which gives A = 1 and A =1 for the two eigenvalues. Equations (2.43)

then read (1 —M)A=0 and (i—MB=0. Thus, for A =1 we must
have A # 0 and B = 0. Similarly, for A =i it is necessary that 4 =90

and B # 0. Hence the normalized eigenvectors arc [(l)] for A =1, and

[{1)] for \ =i. Physically, the result means that light that is linearly

polarized in the direction of either the fast axis or the slow axis is
transmitted without change of polarization. There is no change in
amplitude since [x] = 1 for both cases, but a relative phase change of
/2 occurs since AgfA = = e

2.6 Reflection and Refraction at a Plane Boundary

We now investigate the very basic phenomena of reflection and re-
fraction of light from the standpoint of electromagnetic theory. Itis
assumed that the reader is already familiar with the elementary rules =
of reflection and refraction and how they are deduced from Huygens'




