302  Traffic Flow

ential equation, for now let us first discuss a simpler problem. If the initial
traffic density is a constant,
EAN. Ov = Po»
independent of x, then the density should remain constant (since all cars must
move at the same speed). This is verified by noting that a constant density,
EAR. mv = Po»
satisfies the partial differential equation 66.1. Any constant density is an
equilibrium* density. Let us imagine driving in a traffic situation in which the
density is approximately constant. What does your experience tell you?
What kinds of phenomena do you observe? Does the density seem to stay
constant? Some of you have probably had the experience of driving at a
steady speed and all of a sudden, for no apparent reason, the car in front
slows down. You must slow down, then the car behind slows down, and so
on. Let us investigate that situation, namely one in which the density is
nearly constant.
If the density is nearly uniform, then there should be an mm%nox_BwS
solution to the partial differential equation such that

P(x, 1) = po + €py(x, 1), (66.2)

where |ep,| K p,. €p,(x, 1) is called the perturbed traffic density (or the
displacement from the constant density p,). Assume that the initial density is
a known function of x, nearly equaling the constant p,,

P(x,0) = po + €f(x).

Thus the perturbed traffic density is also known initially, p,(x, 0) = f(x).
Substituting equation 66.2 into the second form of the partial differential
equation 66.1b yields

1% + %L (oo + €piCo O I = 0

where a power of € has been omcoo:oa. The derivative dg/dp is evaluated at the
total traffic density p, + €p,(x, ). Expanding that expression via a Taylor
series, yields

mw? + €py(x, ) = §v +ep, SV +€aSd mmcov T

Thus to leading order Epﬁ is zom_oozam the small terms) the following .

equation is obtained:

*An equilibrium solution of a partial differential equation is a solution which does not
depend on time.
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d dq ., 9P _
G+ e =0 (66.3)

This partial differential equation governs the perturbed traffic density.
However, equation 66.3 is a /inear partial differential equation while the exact
traffic equation 66.1 is a nonlinear partial differential equation. The
coefficient that appears in equation 66.3, (dg/dp)(p,), is a constant (the slope
of the flow as a function of density evaluated at the constant density). This
resulting partial differential equation is the simplest kind involving both

partial derivatives,
1 1
\%Fm“ + ¢ Qm»m =0, (66.4)

where ¢ = (dq/dp)(p,).

EXERCISES

66.1. Assume that dg/dp = a + bp

(a) What nonlinear partial differential equation describes conservation of
cars?

(b) Describe all possible (time-independent) traffic densities p(x) which
satisfy the equation of part (a).

(c) Show that p = p, (any constant) is a time-independent solution.

(d) By substituting

bﬁsﬁ t) = Po + m.buAk.. )]

into the partial differential equation of part (a) and by neglecting non-
linear terms, what equation does p,(x, ¢) satisfy? Is it the same as
equation 66.3?

67. A Linear Partial
Differential Equation

In this section, we will solve the partial differential oacwsoz corresponding to
the linearization of the traffic flow problem,

dp dp,
dnl_ +c dmkw =0, 67.1)




