Homework 9
PH462 EM Waves and Optical Physics
due 7 Nov. 2007 by 5pm
posted: 31 Oct. 2007

1) HM problem 9-21.
2) HM problem 9-22.
3) When the dipole radiates because it is driven by an external wave, the incident radiation is scattered. We can use this description of scattering when the scattering object is much less than the wavelength.
a. A forced, damped oscillator has a position dependence:
$x(t)=\frac{-e E_{0}}{m_{e}} \frac{e^{-i \omega t}}{\left(\omega_{0}^{2}-\omega^{2}\right)-i v \omega}$,
where ω_{0} is the resonance frequency, and v is the radiative damping rate for a particular resonance (see class notes for the radiation damping of a freely oscillating charge). Calculate the total radiated power, using the Larmor equation (eq. 8-89 in HM). To calculate the acceleration, do the time derivatives, then take the real part, that is $\left\langle a^{2}\right\rangle=\left\langle(\operatorname{Re}[\ddot{x}])^{2}\right\rangle$.
b. The scattering cross-section σ is calculated by dividing the radiated power by the incident intensity: $\sigma=P_{\text {avg }} / I_{\text {inc }}$. Show that the scattering cross-section is given by:
$\sigma=\frac{8 \pi r_{e}^{2}}{3} \frac{\omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(v \omega)^{2}}$, where the classical electron radius is $r_{e}=e^{2} / m_{e} c^{2}$.
c. Show that in the low frequency limit, i.e. $\omega \ll \omega_{0}, v \ll \omega_{0}, \sigma=\frac{8 \pi r_{e}^{2}}{3}\left(\frac{\omega}{\omega_{0}}\right)^{4}$.

In this case, we have Rayleigh scattering, with the characteristic ω^{4} dependence. (One reason why the sky is blue.)
d. Show that in the high frequency limit, i.e. $\omega \gg \omega_{0}, \sigma=\frac{8 \pi r_{e}^{2}}{3}$. This is the limit of Thomson scattering, the scattering from a free electron. When the frequency of the incident light is above all resonances (for example soft x-rays incident on atoms), the electrons behave as if they are free.
e. Make a plot of $\log _{10}[\sigma]$ vs ω / ω_{0} for a range near $0<\omega / \omega_{0}<3$, for two damping rates, $v=0.1$ ω_{0} and $v=0.02 \omega_{0}$.
4) Consider a collection of free electrons that have a thermal velocity distribution (Boltzmann). The Thomson-scattered light will be Doppler shifted ($\Delta \omega= \pm \omega_{0} v / c$, where ω_{0} is the angular frequency of the incident light).
a. Show that the spectrum of the scattered light is Gaussian in profile.
b. Derive an expression for the full-width at half maximum (FWHM) of the spectrum and the temperature of the plasma. What mean thermal energy (kT) in eV would correspond to a measured width of $\Delta \omega / \omega_{0}=5 \times 10^{-3}$?
5) HM problem 10.4.

