Physics 311, Fall 2005
Problem Set \#8
Functions as vectors and a little Fourier analysis
Due: Wednesday, November 2
Quote of the Problem Set:
"The time you enjoy wasting is not wasted time." -Bertrand Russell
Read Chapter $3 \S 14$ and Chapter $7 \$ \S 1-4$, then do:

1. Chapter 3, §14, Problems 2, 4.
2. Gram-Schmidt process for functions Read carefully $\S 14$ example 6. You may learn later that the peculiar flavor of a given vector space of functions is imparted by the definition of its inner (scalar) product. Suppose we are given the non-orthogonal set of functions $\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}=\left\{1, x, x^{2}, x^{3}\right\}$ and the scalar product

$$
\begin{equation*}
\left\langle f_{i} \mid f_{j}\right\rangle \equiv \int_{-\infty}^{+\infty} d x f_{i}^{*}(x) f_{j}(x) e^{-x^{2}} \tag{1}
\end{equation*}
$$

find (following Eq. (14.10) of the the text) an orthonormal basis $\left\{p_{0}, p_{1}, p_{2}, p_{3}\right\}$. By all means use Mathematica to evaluate the scalar products and do the normalizations.
3. Chapter 3, §15, Problems 11, 12.
4. Chapter 7, §3, Problem 8.
5. Useful Show that

$$
\begin{align*}
& \int_{-L}^{+L} d x \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=L \delta_{n, m}  \tag{2}\\
& \int_{-L}^{+L} d x \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}=L \delta_{n, m}  \tag{3}\\
& \int_{-L}^{+L} d x \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L}=0 \tag{4}
\end{align*}
$$

Does anything unusual happen when $m=n=0$ ?
Bizarro by Dan Piraro


