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Overview/Keywords/References

Advanced Engineering Mathematics Slide Set Zero

Assumptions and Objectives

Reference Text: EK 7-8, 11-12 Example: N/A

• See Also:

· Lecture Notes : 00.OverviewAndOutline.pdf

• Start:

· Lecture Notes : 01.LinearDefinitions.pdf

· EK.7.1-7.2

· EK.7.3, EK.7.5

• Finish:

· Break
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Before We Begin

Quote of Slide Set Zero

Hank: They can either paint it, or draw it, or write it down and
then pass it on to somebody. They read what you’re saying
and then they reexperience. That’s the only connection you
have with them. You can’t rewrite. To rewrite is to deceive and
lie and you betray your own thoughts.

Martin: I can’t accept your interpretation of my, necessity to
rewrite every single word. Guilt is the key, not sin. Guilt me
not writing the best that I can, considering everything from
every possible angle. Balancing everything.

Naked Lunch (film) : David Cronenberg (1991)
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Assumptions : MATH225 - Part I

• First-order ODE : y′ = f(y, t)

· Integrating Factors or Undetermined Coefficients (UC) :
f(y, t) = a(t)y + b(t)

· Separation of Variables : f(y, t) = h(t)g(y)

· Phase-Space Analysis : f(y, t) = g(y)

• Second-order Linear ODE: a(t)y′′ + b(t)y′ + c(t)y = f(t)

· General Solution : y(t) = yh(t) + yp(t)

· If y1y
′

2 − y′1y2 6= 0 for some initial condition then
yh(t) = c1y1(t) + c2y2(t).

· UC when a, b, c ∈ R and f(t) is expressible as a product
and/or sum of polynomial and exponential functions.

· Power-series : a(t), b(t), c(t) ∈ C2
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Assumptions : MATH225 - Part II

• Beats : a = 1, b = 0, c = ω2 and f(t + δw) = f(t) where δ is
small on some timescale.

· lim
t→∞

y(t) < ∞

• Resonance : a = 1, b = 0, c = ω2 and f(t + w) = f(t).

· lim
t→∞

y(t) = ∞

• Eigenfunction Decomposition : Y′ = AY, A ∈ R
n×n, n ∈ N

· Assuming there is a diagonal D such that A = PDP−1

leads to the problem Ỹ
′

= DỸ whose solution is given by,

Y(t) =
n
∑

i=1

ciYie
λit.
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Assumptions : Calculus - Part I

• Single Variable Calculus

· Limits and Continuity : lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = f(x0) for

all x ∈ R ⇒ f ∈ C(R)

· Fundamental Theorem of Calculus :
d

dx

∫ x

x0

f(t)dt = f(x), x0 < x

• Taylor Series:

e(a+bi)x = eaxeibx =
∞
∑

n=0

anxn

n!

∞
∑

m=0

imbmxm

m!

=
∞
∑

n=0

anxn

n!

(

∞
∑

m=0

(−1)m(bx)2m

2m!
+ i

∞
∑

m=0

(−1)m(bx)2m+1

(2m + 1)!

)

= eax (cos(bx) + i sin(bx))
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Calculus - Part II

• Multivariate Chain Rule : yi = yi(x1, x2)

· ∂xi
u(y1, y2) = ∂y1

u ∂xi
y1 + ∂y2

u ∂xi
y2 for i = 1, 2

• Vector Calculus : ∇ = 〈∂x, ∂y, ∂z〉 = [∂x, ∂y, ∂z]
T

· div(F) = ∇ · F
· curl(F) = ∇× F

• Stokes Theorem :
∫

M

dω =

∮

∂M

ω

· A flux integral of a vector field over its boundary is
equivalent to a volume integral of a differential form of
the vector field.

·

∫∫∫

V

div(F)dV =

∫∫

∂V

F · n̂dA
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Assumptions : ?

• You have taken CSM Core

• You are majoring in any one of the following:

· EG

· GPGH

· MATH

· Econ?

• You may have taken or are now in:

· Info Systems

· Linear Algebra

· Static Fields

· Physics III

· PDE
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Course Description : Bulletin

MATH348: Introduction to partial differential equations, with
applications to physical phenomena. Fourier series. Linear
algebra, with emphasis on sets of simultaneous equations.

• Similar Courses:

· Boston University

· The Chinese University of Hong Kong : ERG2011A
Advanced Engineering Maths

· The University of Texas at Dallas : EE 3300-001
Advanced Engineering Mathematics

· MIT
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Goals and Objectives

• Goals:

· Study the concepts of mathematical modeling through
the techniques provided by the bulletin.

· Understand linear mathematics as it pertains to Algebra
and Differential Equations.

• Objectives:

· Linear Systems of Equations : Ax = b where A ∈ R
m×n

and b ∈ R
m

· Linear Scalings : Ax = λx where A ∈ R
n×n and λ ∈ C.

· Plancherel theorem : Fp : L2(R) → L2(R) is the unique
isometry onto L2.

· Linear PDE : Elliptic, △u = f , Parabolic, ut = c2△u + f ,
and Hyperbolic, utt = c2△u + f PDE.
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Linear Systems of Algebraic Equations

• Key Point:

· Problems involving systems of linear equations can be
algebraically manipulated as matrices and vectors.

• Key Question:

· Given A ∈ R
m×n and b ∈ R

m. When does the solution to
Ax = b exist? Also, if a solution exists then when is this
solution unique?

• Key Answer:

· If b is in the column space of A then a solution exists. If
the dimension of the null space of A is zero then this
solution is unique.
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Spectrum and Basis

• Linear Scalings are Common:

· Exponential Growth/Decay : y′ = αy, α ∈ R

· Constant Linear ODE : Y′ = AY, A ∈ R
n×n and Y(0) ∈ R

n

· Linear PDE : △u = λu, λ ∈ R

• For martix equations, linear algebra asks:

· Find all λ ∈ C and x ∈ C
n such that Ax = λx.

• The key tasks are to solve the following:

· Roots of Characteristic Polynomial : det(A − λI) = 0

· Basis for each Null Space : (A − λI)x = 0

• Almost all matrices admit an eigenbasis for the domain of
transformation by A:

· Diagonalization : A = PDP−1, [D]ij = diδij
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Fourier Transform (FT)

• FT : Let f, f̂ ∈ L1(R) then

f̂(ω) =

∫

∞

−∞

f(x)e−2πiωxdx ⇐⇒ f(x) =

∫

∞

−∞

f̂(ω)e2πiωxdω

· Parseval’s Theorem : ||f || = ||f̂ ||

· Uncertainty Relation : 16π2||x2f2|| ||ω2f̂2|| ≥ 1

• Plancherel Theorem : Using the Hermite polynomials,
defined by, H ′′ − xH ′ = λH, it is possible to extend these
results to the Hilbert space L2(R).

• Fourier Series :

f̂(ω) =
∞
∑

n=−∞

cnδ
(

ω −
n

2π

)

⇐⇒ f(x) =
∞
∑

n=−∞

cneinx
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Partial Differential Equations

• Given αutt + βut = c2△u + f , where
u = u(x, t), x ∈ D ⊂ R

3, t ∈ (0,∞).

· Laplacian : △u = uxx + uyy + uzz

· Heat/Diffusion : α = 0 and β 6= 0

· Wave : α 6= 0 and β = 0

· Homogeneous : f = f(x, t) = 0

· Dirichlet : u(x, t) = 0 for x ∈ ∂D

· Neumann : uxi
(x, t) = 0 for x ∈ ∂D

• Suppose we have a homogeneous heat problem in R
1+1

with Dirchlet boundary conditions. If the object has finite
length π then,

u(x, t) =
∞
∑

n=1

bn sin(nx)e−n2c2t
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Conclusions

• Linear mathematics obeys an algebraic structure that
simplifies analysis in any context. In many ways it is a
‘complete’ theory. That is, if a problem is linear then its
general solution can always be expressed as a linear
combination of elementary solutions.

• The concept of a linear vector space allows one to define
the mathematical construct where solutions to linear
problems ‘live.’ If a basis for this space is defined then ANY

element of that space can be defined by linear
combination.

• Particular types of functions also satisfy the vector space
axioms and define a linear function space, which abstracts
the notion of R

n and has been used to connect linear
problems from various areas of mathematics.
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