
Reading assignment. Schroeder, section 4.1.

0.1 Diffusive contact

The condition for equilibrium of two systems in thermal plus diffusive con-
tact, that is, able to exchange both energy and particles, is obtained in
much the same way as for thermal contact plus mechanical contact. There
are two independent variables describing the macrostate of the combined
system, as well as the individual subsystems. Those can be taken to be
the energy, U1, and the number of particles, N1, of the first subsystem.
In equilibrium, the total entropy, calculated as the sum of the entropies of
the subsystems, is maximized with respect to both variables, so the partial
derivatives of the total entropy with respect to both must vanish. In equi-
librium, then, the temperatures of the two subsystems must be equal, and
the particle-number derivatives must satisfy(

∂S1

∂N1

)
U1,V1

=
(

∂S2

∂N2

)
U2,V2

. (1)

Prior to the establishment of equilibrium, the subsystem having the
larger slope (∂Si/∂Ni)Ui,Vi

will gain particles at the expense of the other
one, since that permits the total entropy to increase, whereas the reverse
process would decrease the total entropy. Once the slopes have equalized,
there is no entropic benefit to additional particle transfer, so particle trans-
fer in one direction is balanced by particle trnasfer in the other direction.

If we permit the subsystems to exchange volume as well, then the pres-
sures must also be equal in equilibrium. A nice example of such a system is
a sealed, isolated container containing both liquid water and water vapor in
equilibrium. There is a movable interface between the liquid and the gas,
so they can exchange volume, as well as particles and energy.

It was easy for us to relate the partial derivatives of the entropy with
respect to energy and volume to the familiar thermodynamic variables tem-
perature and pressure, since they are so familiar and well understood. In
the case of pressure, there is even a mechanical definition, which made the
task even easier. The partial derivative of the entropy with respect to parti-
cle number, however, is not related to anything so simple. But it is related
to the thermodynamic variable called chemical potential :(

∂S

∂N

)
U,V

= −µ

T
, (2)

where µ denotes the chemical potential. Be careful not to confuse this with
magnetic moment, for which we also used the symbol µ.

The chemical potential is familiar to chemists, who use it and quantities
related to it routinely to analyze chemical reactions, where the numbers of
particles of the reactant and product species necessarily change as a reaction
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proceeds. But we’ll try to develop a general feel for the meaning of both
∂S/∂N and µ without dealing with the complexities of chemical reactions.

First, let’s think about the sign of ∂S/∂N . We generally expect to have
more microstates available when we add particles, since there are generally
more ways to arrange more particles. Indeed, one of the homework problems
was based on the idea that in many cases the entropy is just Nk times a
number that is not large, so that the entropy could be estimated by Nk
alone. This suggests that, to some rough approximation, ∂S/∂N has the
constant, positive value k, and S is linear in the number of particles. That
can’t be quite the whole story, of course, or there would be no possibility of
having two subsystems come to equilibrium through equalization of their
partial derivatives, as in (2).

To get a more complete picture, let’s return to the familiar example of
the ideal gas, whose entropy is

S(U, V,N) = Nk

{
ln

[
V

N

(
4πmU

3h2N

)3/2
]

+
5
2

}
. (3)

Since we’re interested in the partial derivative with respect to N with U
and V held fixed, it will be useful to rewrite the expression to separate N
from the other variables a little better:

S(U, V,N) = Nk

[
−5

2
lnN +

3
2

ln
(

4πmV 2/3U

3h2

)
+

5
2︸ ︷︷ ︸

f(U, V )

]
. (4)

There are two important things to notice now. First, the negative sign
on the first term implies that the behavior of S with N for fixed U and V
is sublinear. That’s a good thing, because it allows the slope of S(N) to
vary, permitting two subsystems in diffusive contact to have a well-defined
equilibrium distribution of particles.

The second thing to notice is that for a large enough value of N , the
entropy can begin to decrease with increasing N , eventually even becoming
negative. That’s bad news, but we have already examined in a homework
problem a similar difficulty, that the ideal-gas entropy can become negative
at sufficiently low temperature. In fact, it’s the same problem, since adding
particles at fixed energy necessarily requires that those new particles have
zero energy, which reduces the average energy per particle, making the
temperature smaller. As you should recall, the problem is resolved by
noting that the ideal gas becomes nonideal at low temperatures, where the
assumptions made in deriving the Sackur-Tetrode expression for its entropy
fail. Indeed, it is necessary to take into account the quantum-mechanical
nature of the particles under those conditions, something we’re not yet
prepared to do. So, we’ll just keep in mind that we don’t want to add too
many particles. To get a feel for how many that might be, let’s consider a
specific example, which will also provide us with some numbers to use in
our examination of the chemical potential.

2



Example. Let’s consider a system consisting of helium gas in a container
of volume 1 m3 with pressure 1 atm and temperature 300 K. We’ll want
to find explicit values for f(U, V ) and for the number of particles, so we
can compare the positive and negative terms in the entropy. The number
of particles under the stated conditions, which we’ll denote by N0, is

N0 =
PV

kT
≈ 2.445× 1025 , (5)

so that
5
2

lnN0 ≈ 146.1 . (6)

The value of f(U, V ) is best calculated by first making use of the ideal-gas
law PV = NkT and the equipartition theorem U = 3

2kT to rewrite U as

U =
3
2
PV , (7)

so that f becomes

f(P, V ) =
3
2

ln
(

2πmV 5/3P

h2

)
+

5
2
≈ 161.3 . (8)

The entropy is then

S = N0k

(
f − 5

2
lnN0

)
≈ N0k × 15.18 . (9)

This shows that the multiplier of N0k is, as claimed, not large and that
we still can add quite a large number of particles before the entropy goes
negative. Specifically, when S = 0, the ratio of the particle number to N0

is
N

N0
≈ e

2
5×15.18 ≈ 433 . (10)

Now, at last, let’s take a look at the derivative. With S expressed as in
(4), we have (

∂S

∂N

)
U,V

=
S

N
− 5

2
k (monatomic ideal gas)

= k

[
f(U, V )− 5

2
(1 + lnN)

]
.

(11)

Example. Using the numbers from the last example, we find

1
k

(
∂S

∂N0

)
U,V

= f(U, V )︸ ︷︷ ︸
≈ 161.3

− 5
2

(1 + lnN0︸ ︷︷ ︸
≈ 58.46

)

︸ ︷︷ ︸
≈ 148.6

≈ 12.68 .

(12)
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Notice first that this is a positive value, so the chemical potential

µ = −T

(
∂S

∂N0

)
U,V

(13)

is negative.
In addition, it’s clear that the derivative and the chemical potential can

vanish, and it does so at the point where the Sackur-Tetrode entropy begins
to decrease with increasing N . That happens when

f(U, V ) =
5
2

(1 + lnN) , (14)

which occurs when
N

N0
≈ e

2
5×12.68 ≈ 159 . (15)

So, there’s still plenty of room to stuff more He atoms into the container
before that happens.

Now we understand that µ is negative for “typical” systems under “typ-
ical” conditions, though there are significant exceptions in systems where
the quantum nature of the particles is important. When two systems are
placed in diffusive contact, the one with the higher (less negative) chemi-
cal potential, or smaller slope (∂S/∂N)U,V , gives up particles to the other
system.

Also, from (11) we see that the slope tends to decrease as N increases,
which means the chemical potential increases as N increases.

It may be useful to think about both of these observations in terms
of analogies with charges and potentials in electrostatics. Consider only
positively charged particles, for which the analogies are the most direct.
Such particles, when placed in a region of high electrostatic potential, will
flow toward regions of lower potential, just as uncharged particles in a region
of high chemical potential flow toward regions of lower chemical potential.
As well, an accumulation of many positively charged particles in a location
causes that region to have high electrostatic potential in comparison to
other regions having fewer positive particles. These analogies make it seem
quite natural that µ has been given the name “chemical potential.”

Question. Suppose we evacuate a sealed container, then squirt some liquid
water into the chamber, all placed in a gravitational field, so the liquid
stays on the bottom. Describe what happens andy why, using the concept
of chemical potential.
Answer: Initially, consider two subsystems, the liquid water and the space
above it. Since there are many water molecules in the liquid, and the space
above initially has none, the chemical potential of water molecules in the
water is much higher than that in the space above, so water molecules will
“flow” from the liquid into the space above. That is, they evaporate. The
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process continues until the chemical potentials, temperatures, and pressures
in the two parts of the container are equal, at which point any further
evaporation is balanced by an equivalent amount of condensation, and the
system becomes macroscopically static.

HW Problem. Schroeder problem 3.36, p. 119.

[EOC, Mon. 2/20/2006, #18; HW06 closed, due Mon. 2/27/2006]

Now that we have examined all three of the variables upon which the
entropy depends in simple systems, we can write down the full expression for
the thermodynamic identity we presented last time. Since S = S(U, V,N),
its total differential is

dS =
(

∂S

∂U

)
V,N︸ ︷︷ ︸

1
T

dU +
(

∂S

∂V

)
U,N︸ ︷︷ ︸

P

T

dV +
(

∂S

∂N

)
U,V︸ ︷︷ ︸

−µ

T

dN , (16)

so that

dS =
1
T

dU +
P

T
dV − µ

T
dN . (17)

This can be rearranged to give:

dU = T dS − P dV + µdN . (18)

The concept of chemical potential is easily generalized to systems with
more than one type of particle. The entropy has a functional dependence
upon the numbers of each species:

S = S(U, V,N1, . . . , Nn) , (19)

so the equilibrium condition for systems placed in thermal, mechanical, and
diffusive contact involves equalization of the partial derivatives of S with
respect to all the variables, with each of the species having separately equal
derivatives. The total differential of the entropy is then

dS =
1
T

dU +
P

T
dV − 1

T

n∑
i=1

µi dNi . (20)

The corresponding total differential of the energy is

dU = T dS − P dV +
n∑

i=1

µi dNi . (21)

Here’s another interesting tidbit that follows from the ideal-gas entropy.
From (11) and the definition of chemical potential, we have(

∂S

∂N

)
U,V

=
S

N
− 5

2
k = −µ

T
. (22)
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This means we can write the entropy in terms of the chemical potential as

S =
5
2
Nk − µ

T
N

=
3
2
Nk + Nk − µ

T
N .

(23)

But the ideal-gas law, PV = NkT , and the equipartition theorem for the
monatomic ideal gas, U = 3

2NkT , permit rewriting the first two terms as
U/T and PV/T , respectively, leading to

S =
1
T

U +
P

T
V =

µ

T
N . (24)

Notice the similarity with the thermodynamic identity (17), involving dif-
ferentials of the variables S, U , V , and N .

Rearrangement of (24) leads to the expression

U = TS − PV + µN , (25)

which should be compared to the differential form (18).
It turns out that (24) and (25) are generally valid, not just for the

ideal gas, as our derivation would suggest. As such, they have some useful
general implications. Consider, for example, the total differential of U as
obtained from (25):

dU = T dS + S dT − P dV − V dP + µdN + N dµ . (26)

In view of (18), we must conclude that

S dT − V dP + N dµ = 0 , (27)

a result known as the Gibbs-Duhem equation. This is often useful for finding
the chemical potential in terms of the pressure and temperature.
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