
Advanced Engineering Mathematics Homework Eight Solutions

Partial Differential Equations : Heat Equation, Wave Equation, Properties, External Forcing

Text: 12.3-12.5 Lecture Notes : 14 and 15 Lecture Slides: 6

Quote of Homework Eight Solutions

Go down in your own way and everyday is the right day and as you rise above the fearlines

in his frown you look down and hear the sound of the faces in the crowd.

Pink Floyd : Fearless - Meddle (1971)

1. Heat Equation on a closed and bounded spatial domain of R1+1

Consider the one-dimensional heat equation,

∂u

∂t
= c2

∂2u

∂x2
,(1)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
K

σρ
.(2)

Equations (1)-(2) model the time-evolution of the temperature, u = u(x, t), of a heat conducting medium in one-dimension. The object,

of length L, is assumed to have a homogenous thermal conductivity K, specific heat σ, and linear density ρ. That is, K,σ, ρ ∈ R+. If we

consider an object of finite-length, positioned on say (0, L), then we must also specify the boundary conditions1,

(3) ux(0, t) = 0, ux(L, t) = 0, .

Lastly, for the problem to admit a unique solution we must know the initial configuration of the temperature,

(4) u(x, 0) = f(x).

1.1. Separation of Variables : General Solution. Assume that the solution to (1)-(2) is such that u(x, t) = F (x)G(t) and use separation

of variables to find the general solution to (1)-(2), which satisfies (3)-(4). 2

(1) Assume that, u(x, t) = F (x)G(t) then uxx = F ′′(x)G(t) and ut = F (x)G′(t) and the 1-D heat equation becomes,

G′(t)

c2G(t)
=
F ′′(x)

F (x)
= −λ,(5)

where we have introduced the separation constant λ.3 From this equation we have the two ODE’s,

G′(t) + λc2G(t) = 0,(6)

F ′′(x) + λF (x) = 0.(7)

Each of these ODE’s can be solved through ‘elementary methods’ to get,4

λ ∈ R : G(t) = Ae−λc
2t, A ∈ R,(8)

λ ∈ R+ : F (x) = c1 cos(
√
λx) + c2 sin(

√
λx),(9)

λ ∈ R− : F (x) = c3 cosh(
p
|λ|x) + c4 sinh(

p
|λ|x),(10)

λ = 0 : F (x) = c5 + c6x.(11)

Each of the functions F (x) must also satisfy the boundary conditions, ux(0, t) = 0 and ux(L, t) and so we won’t need all of

them. Notice that the boundary conditions imply that,

ux(0, t) = F ′(0)G(t) = 0,(12)

ux(L, t) = F ′(L)G(t) = 0,(13)

1Here the boundary conditions correspond to perfect insulation of both endpoints
2An insulated bar is discussed in examples 4 and 5 on page 557.
3This occurs in conjunction with the following argument. Since (5) must be true for all (x, t) then both sides must be equal to a function that has

neither t’s nor x’s. Hence they must be equal to a constant function. To see that this is true put an x or t on the side that has λ and test points.
4These elementary methods are those you learned in ODE’s and can be found in the ODE review of the lecture slides on separation of variables.
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which gives F ′(0) = 0 and F ′(L) = 0.5 So, we now have to determine, which of the previous functions, F (x), satisfy these boundary

conditions. To this end we have the following arguments,

λ ∈ R+ : F ′(0) = −c1
√
λ sin(

√
λ0) + c2

√
λ cos(

√
λ0) = c1

√
λ · 0 + c2

√
λ · 1 =⇒ c2 = 0,

λ ∈ R+ : F ′(L) = −c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = c1

√
λ · sin(

√
λL) + 0 ·

√
λ cos(

√
λL) =⇒

=⇒ c1
√
λ · sin(

√
λL) = 0 ⇐⇒ c1 = 0 or sin(

√
λL) = 0.

If we consider the case that c1 = 0 then we have F (x) = 0 for λ ∈ R+ but we should try to keep as many solutions as possible and

we ignore this case. Thus assume that c1 6= 0 we have that sin(
√
λL) = 0, which is true for

√
λ = nπ/L and we have the following

eigenvalue/eigenfunction pairs indexed by n,

Fn(x) = cn cos(
√
λx), λn =

n2π2

L2
, n = 1, 2, 3, . . . .(14)

We now consider the λ ∈ R− case to find that,

λ ∈ R− : F ′(x) = c3
p
|λ| sinh(

p
|λ|0) + c4

p
|λ| cosh(

p
|λ|0) = c3 · 0 + c4 · 1 = 0 =⇒ c4 = 0,

λ ∈ R− : F ′(x) = c3
p
|λ| sinh(

p
|λ|L) + c4

p
|λ| cosh(

p
|λ|L) = c3

p
|λ| sinh(

p
|λ|L) + 0 ·

p
|λ| cosh(

p
|λ|L) =

= c3
p
|λ|e
√
|λ|L − e−

√
|λ|L

2
= 0 =⇒ c3 = 0,

which means that for λ ∈ R− we only have the trivial solution F (x) = 0. Lastly, we consider the case λ = 0 to get,

λ = 0 : F ′(0) = F ′(L) = c6 = 0 =⇒ c5 ∈ R,(15)

which gives the last eigenpair,6

F0 = c0 ∈ R λ0 = 0.(16)

Noting that there are infinitely many λ’s implies now that there are infinitely many temporal solutions (8) and we have,

Gn(t) = Ane
λnc

2t, λ =
n2π2

L2
, n = 1, 2, 3, . . . .(17)

For the case where λ = 0 we have the ODE G′(t) = 0, whose solution isG0(t) = A0 ∈ R. Thus we have infinitely many functions,

that solve the PDE, of the form:

un(x, t) = Fn(x)Gn(t), n = 0, 1, 2, 3, . . .(18)

Hence since the PDE is linear superposition implies that we have the general solution,

u(x, t) =

∞X
n=0

un(x, t) = u0(x, t) +

∞X
n=1

un(x, t)(19)

= F0(x)G0(x) +

∞X
n=1

Fn(x)Gn(t)(20)

= c0 ·A0 +

∞X
n=1

Ancn cos(
√
λnx)eλnc

2t(21)

= a0 +

∞X
n=1

an cos(
√
λnx)eλnc

2t,(22)

which is the general solution of the heat equation with the given boundary conditions.

1.2. Qualitative Dynamics. Describe how the long term behavior of the general solution to (1)-(4) changes as the thermal

conductivity, K, is increased while all other parameters are held constant. Also, describe how the solution changes when the linear

density, ρ, is increased while all other parameters are held constant.

• If κ(thermal conductivity) is increased, the temporal solution decays faster and the system reaches equilibrium sooner.

• If ρ(density) is increased, the temporal solution decays slower and the system takes longer to reach equilibrium.

5We assume that G(t) = 0 because if it did then we would have u(x, t) = F (x)G(t) = F (x) · 0 = 0, which is called the trivial solution and is ignored

since it is already in thermal equilibrium. We care about dynamics!
6Here we have used the subscripts to denote that these are all associated with the λ = 0 case. We have also trivially changed c5 to c0.
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1.3. Fourier Series : Solution to the IVP. Define,

(23) f(x) =

8>>><>>>:
2k

L
x, 0 < x ≤ L

2
,

2k

L
(L− x), L

2
< x < L

and for the following questions we consider the solution, u, to the heat equation given by, (1)-(2), which satisfies the initial condition

given by (53). 7 For L = 1 and k = 1, find the particular solution to (1)-(2) with boundary conditions (3)-(4) for when the initial

temperature profile of the medium is given by (53). Show that lim
t→∞

u(x, t) = favg = 0.5.8

To find the unknown constants present in the general solution we must apply an initial condition, u(x, 0) = f(x). Doing so

gives,

u(x, 0) = f(x) = a0 +

∞X
n=1

an cos(
√
λnx)eλnc

2·0(24)

= a0 +

∞X
n=1

an cos(
√
λnx),(25)

which is a Fourier cosine half-range expansion of the initial condition. Thus the unknown constants are Fourier coefficients and,

a0 =
1

L

Z L

0

f(x)dx,(26)

an =
2

L

Z L

0

f(x) cos(
√
λnx)dx.(27)

If we note that these integrals have been done in a previous homework on Fourier series, then we known these Fourier coefficients

as,

a0 =
k

2
,(28)

an =
4k

n2π2

h
2 cos

“nπ
2
x
”
− (−1)n − 1

i
.(29)

Moreover, if we take L = k = 1 we see that lim
t→∞

u(x, t) = a0 = .5, which implies that under these insulating boundary conditions

the equilibrium state for the medium is a constant function u = .5 and that this is nothing more than the average of the initial

configuration.

2. Wave Equation on a closed and bounded spatial domain of R1+1

Consider the one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
,(30)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
.(31)

Equations (30)-(31) model the time-evolution of the displacement,u = u(x, t), from rest, of an elastic medium in one-dimension. The object,

of length L, is assumed to have a homogeneous lateral tension T , and linear density ρ. That is, T, ρ ∈ R+. Assume, as well, the boundary

conditions9,

(32) ux(0, t) = 0, ux(L, t) = 0,

and initial conditions,

u(x, 0) = f(x),(33)

ut(x, 0) = g(x).(34)

7When solving the following problems it would be a good idea to go back through your notes and the homework looking for similar calculations.
8It is interesting here to note that though the initial condition f doesn’t appear to satisfy the boundary conditions its periodic Fourier extension

does. That is, if you draw the even periodic extension of the initial condition then you would see that the slope is not well defined at the end points.

Remembering that the Fourier series averages the right and left hand limits of the periodic extension of the function f at the endpoints shows that the

boundary conditions are, in fact, satisfied, since the derivative of an average is the average of derivatives.
9These boundary conditions imply that the object must have zero slope at each endpoint.
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2.1. Separation of Variables : General Solution. Assume that the solution to (30)-(31) is such that u(x, t) = F (x)G(t) and use

separation of variables to find the general solution to (30)-(31), which satisfies (32)-(34). 10 11

The only difference between this problem and the heat problem above are the time-dynamics specified by the PDE. This gives a second-

order constant linear ODE in time and from this ODE we have oscillations of Fourier modes instead of exponential decay.

Assume that, u(x, t) = F (x)G(t) then uxx = F ′′(x)G(t) and utt = F (x)G′′(t) and the 1-D wave equation becomes,

G′′(t)

c2G(t)
=
F ′′(x)

F (x)
= −λ,(35)

where we have introduced the separation constant λ.12 From this equation we have the two ODE’s,

G′′(t) + λc2G(t) = 0,(36)

F ′′(x) + λF (x) = 0.(37)

Each of these ODE’s can be solved through ‘elementary methods’ to get,13

λ ∈ R : G(t) = A1 cos
“
c
√
λt
”

+A∗1 sin
“
c
√
λt
”
, A1, A

∗
1 ∈ R,(38)

λ ∈ R+ : F (x) = c1 cos(
√
λx) + c2 sin(

√
λx),(39)

λ ∈ R− : F (x) = c3 cosh(
p
|λ|x) + c4 sinh(

p
|λ|x),(40)

λ = 0 : F (x) = c5 + c6x.(41)

Each of the functions F (x) must also satisfy the boundary conditions, ux(0, t) = 0 and ux(L, t) and so we won’t need all of them. Notice

that the boundary conditions imply that,

ux(0, t) = F ′(0)G(t) = 0,(42)

ux(L, t) = F ′(L)G(t) = 0,(43)

which gives F ′(0) = 0 and F ′(L) = 0.14 So, we now have to determine, which of the previous functions, F (x), satisfy these boundary

conditions. To this end we have the following arguments,

λ ∈ R+ : F ′(0) = −c1
√
λ sin(

√
λ0) + c2

√
λ cos(

√
λ0) = c1

√
λ · 0 + c2

√
λ · 1 =⇒ c2 = 0,

λ ∈ R+ : F ′(L) = −c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = c1

√
λ · sin(

√
λL) + 0 ·

√
λ cos(

√
λL) =⇒

=⇒ c1
√
λ · sin(

√
λL) = 0 ⇐⇒ c1 = 0 or sin(

√
λL) = 0.

If we consider the case that c1 = 0 then we have F (x) = 0 for λ ∈ R+ but we should try to keep as many solutions as possible and

we ignore this case. Thus assume that c1 6= 0 we have that sin(
√
λL) = 0, which is true for

√
λ = nπ/L and we have the following

eigenvalue/eigenfunction pairs indexed by n,

Fn(x) = cn cos(
√
λx), λn =

n2π2

L2
, n = 1, 2, 3, . . . .(44)

We now consider the λ ∈ R− case to find that,

λ ∈ R− : F ′(x) = c3
p
|λ| sinh(

p
|λ|0) + c4

p
|λ| cosh(

p
|λ|0) = c3 · 0 + c4 · 1 = 0 =⇒ c4 = 0,

λ ∈ R− : F ′(x) = c3
p
|λ| sinh(

p
|λ|L) + c4

p
|λ| cosh(

p
|λ|L) = c3

p
|λ| sinh(

p
|λ|L) + 0 ·

p
|λ| cosh(

p
|λ|L) =

= c3
p
|λ|e
√
|λ|L − e−

√
|λ|L

2
= 0 =⇒ c3 = 0,

which means that for λ ∈ R− we only have the trivial solution F (x) = 0. Lastly, we consider the case λ = 0 to get,

λ = 0 : F ′(0) = F ′(L) = c6 = 0 =⇒ c5 ∈ R,(45)

10It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem above.
11Remember that in this case we have a nontrivial spatial solution for zero eigenvalue. From this you should find the associated temporal function

should find that G0(t) = C1 + C2t.
12This occurs in conjunction with the following argument. Since (35) must be true for all (x, t) then both sides must be equal to a function that has

neither t’s nor x’s. Hence they must be equal to a constant function. To see that this is true put an x or t on the side that has λ and test points.
13These elementary methods are those you learned in ODE’s and can be found in the ODE review of the lecture slides on separation of variables.
14We assume that G(t) = 0 because if it did then we would have u(x, t) = F (x)G(t) = F (x) · 0 = 0, which is called the trivial solution and is ignored

since it is already in thermal equilibrium. We care about dynamics!
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which gives the last eigenpair,15

F0 = c0 ∈ R λ0 = 0.(46)

Noting that there are infinitely many λ’s implies now that there are infinitely many temporal solutions (38) and we have,

Gn(t) = G(t) = An cos
“
c
√
λnt
”

+A∗n sin
“
c
√
λnt
”
, λn =

n2π2

L2
, n = 1, 2, 3, . . . .(47)

For the case where λ = 0 we have the ODE G′′(t) = 0, whose solution isG0(t) = A0 + A∗0t. Thus we have infinitely many functions, that

solve the PDE, of the form:

un(x, t) = Fn(x)Gn(t), n = 0, 1, 2, 3, . . .(48)

Hence since the PDE is linear superposition implies that we have the general solution,

u(x, t) =

∞X
n=0

un(x, t) = u0(x, t) +

∞X
n=1

un(x, t)(49)

= F0(x)G0(x) +

∞X
n=1

Fn(x)Gn(t)(50)

= c0 · (A0 +A∗0t) +

∞X
n=1

cn cos(
√
λnx)

h
An cos

“
c
√
λnt
”

+A∗n sin
“
c
√
λnt
”i

(51)

= a0 + a∗0t+

∞X
n=1

cos(
√
λnx)

h
an cos

“
c
√
λnt
”

+ a∗n sin
“
c
√
λnt
”i
,(52)

which is the general solution of the one-dimensional wave equation with the given the boundary conditions.

2.2. Qualitative Dynamics. Describe how the the general solution to (30)-(31) changes as the tension, T , is increased while all other

parameters are held constant. Also, describe how the solution changes when the linear density, ρ, is increased while all other parameters

are held constant.

• If T (Tension) is increased, the temporal solution oscillate faster.

• If ρ(density) is increased, the temporal oscillates slower.

2.3. Fourier Series : Solution to the IVP. Define,

(53) f(x) =

8>>><>>>:
2k

L
x, 0 < x ≤ L

2
,

2k

L
(L− x), L

2
< x < L.

Let L = 1 and k = 1 and find the particular solution, which satisfies the initial displacement, f(x), given by (53) and has zero initial

velocity for all points on the object.

To find the unknown constants present in the general solution we must apply an initial condition, u(x, 0) = f(x). Doing so gives,

u(x, 0) = f(x) = a0 + a∗0 · 0 +

∞X
n=1

cos(
√
λnx)

h
an cos

“
c
√
λn · 0

”
+ a∗n sin

“
c
√
λn · 0

”i
(54)

= a0 +

∞X
n=1

an cos(
√
λnx),(55)

which is a Fourier cosine half-range expansion of the initial condition. Thus the unknown constants are Fourier coefficients and,

a0 =
1

L

Z L

0

f(x)dx,(56)

an =
2

L

Z L

0

f(x) cos(
√
λnx)dx.(57)

If we note that these integrals have been done in a previous homework on Fourier series, then we known these Fourier coefficients as,

a0 =
k

2
,(58)

an =
4k

n2π2

h
2 cos

“nπ
2
x
”
− (−1)n − 1

i
.(59)

15Here we have used the subscripts to denote that these are all associated with the λ = 0 case. We have also trivially changed c5 to c0.
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Now we apply the initial velocity, ut(x, 0) = g(x) = 0 to get that,

ut(x, 0) = g(x) = a∗0 +

∞X
n=1

cos(
√
λnx)

h
anc
√
λn sin

“
c
√
λn · 0

”
+ a∗nc

√
λn cos

“
c
√
λn · 0

”i
(60)

= a∗0 +

∞X
n=1

a∗nc
√
λn cos(

√
λnx)(61)

which is a Fourier cosine half-range expansion of the initial condition. Thus the unknown constants are Fourier coefficients and,

a∗0 =
1

L

Z L

0

g(x)dx,(62)

a∗n =
2

c
√
λnL

Z L

0

g(x) cos(
√
λnx)dx,(63)

but since g(x) = 0 we have that a∗0 = a∗n = 0 for all n.16

3. D’alembert Solution to the Wave Equation in R1+1

Show that by direct substitution that the function u(x, t) given by,

(64) u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

Z x+ct

x−ct
v0(y)dy,

is a solution to the one-dimensional wave equation where u0 and v0 are the ideally elastic objects initial displacement and velocity, respec-

tively. 17

We must take derivatives of u(x, t). We note the following relations, which follow from the chain-rule.

∂

∂t
[u0(x∓ ct)] =

∂u0

∂ [x∓ ct]
∂ [x∓ ct]

∂t
= u′0 · ∓c =⇒ ∂2

∂t2
[u0(x∓ ct)] = c2u′′0 (x∓ ct)(65)

∂

∂x
[u0(x∓ ct)] =

∂u0

∂ [x∓ ct]
∂ [x∓ ct]

∂x
= u′0 =⇒ ∂2

∂x2
[u0(x∓ ct)] = u′′0 (x∓ ct)(66)

The derivatives on the second term involving the initial-velocity are more difficult. First, note the following simplification,Z x+ct

x−ct
v0(y)dy =

Z x+ct

0

v0(y)dy −
Z x−ct

0

v0(y)dy.(67)

Also note the following formula that follows from the fundamental theorem of calculus.

d

dx

Z f(x)

0

g(t)dt =
df

dx
g(f(x))(68)

Thus,

∂

∂t

»Z x±ct

0

v0(y)dy

–
=

∂

∂t
[x± ct] v0(x± ct)(69)

= ±cv0(x± ct) =⇒ ∂2

∂t2

»Z x±ct

0

v0(y)dy

–
= c2v′0(x± ct),(70)

and

∂

∂x

»Z x±ct

0

v0(y)dy

–
=

∂

∂x
[x± ct] v0(x± ct)(71)

= v0(x± ct) =⇒ ∂2

∂x2

»Z x±ct

0

v0(y)dy

–
= v′0(x± ct).(72)

With this in hand we now have,

utt =
c2

2

ˆ
u′′0 (x− ct) + u′′0 (x+ ct)

˜
+
c

2

ˆ
v′0(x+ ct)− v′0(x− ct)

˜
(73)

c2uxx = c2
„

1

2

ˆ
u′′0 (x− ct) + u′′0 (x+ ct)

˜
+

1

2c

ˆ
v′0(x+ ct)− v′0(x− ct)

˜«
,(74)

which implies that utt − c2uxx = 0.

16It is interesting to note that if a∗0 6= 0 then the displacement grows with time. This is a consequence of the boundary conditions, which require

the string to be flat at the endpoints but do not require they stay fixed.

17This is called the D’Alembert solution to the wave equation. To do this you may want to recall the fundamental theorem of calculus,
d

dx

Z x

0
f(t)dt =

f(x) and properties of integrals,

Z a

−a
f(x)dx =

Z 0

−a
f(x)dx+

Z a

0
f(x)dx.
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4. Time Dependent Boundary Conditions

It makes sense to consider time-dependent interface conditions. That is, (1) and (4) subject to

u(0, t) = g(t), u(L, t) = h(t), t ∈ (0,∞)(75)

Show that this PDE transforms into:

∂w

∂t
= c2

∂2w

∂x2
− St(x, t) ,(76)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
κ

ρσ
.(77)

with boundary conditions and initial conditions,

w(0, t) = w(L, t) = 0,(78)

w(x, 0) = F (x),(79)

where F (x) = f(x)− S(x, 0) and S(x, t) =
h(t) + g(t)

L
x+ g(t). 18

We need to find the correct function w(x, t) such that (1) and (4) subject to the given boundary conditions transforms to (76)-(79).

Specifically, we need to find,

w(x, t) = u(x, t)− T (x),(80)

such that w(0, t) = w(L, t) = 0. Hoping for the best we assume that T is a linear function of x, T (x) = ax+ b, where a and b are unknown.

The left boundary condition on w implies that,

w(0, t) = u(0, t)− T (0)(81)

= g(t)− b(82)

= 0,(83)

while the right boundary condition on w implies that,

w(L, t) = u(L, t)− T (L)(84)

= h(t)− aL− b(85)

= 0.(86)

From this we have that,

b = g(t),(87)

a =
h(t)− b

L
.(88)

This gives the form for w as,

w(x, t) = u(x, t)−
„
h(t)− b

L
x+ g(t)

«
(89)

= u(x, t)−
„
h(t)− g(t)

L
x+ g(t)

«
(90)

= u(x, t)− S(x, t),(91)

where S(x, t) =

„
h(t)− g(t)

L
x+ g(t)

«
. The initial condition on w is now,

w(x, 0) = u(x, 0)− S(x, 0).(92)

Finally, we have the transformations,

ut = wt + St,(93)

uxx = wxx + Sxx(94)

= wxx,(95)

18A similar transformation can be found for the wave equation with inhomogeneous boundary conditions. The moral here is that time-dependent

boundary conditions can be transformed into externally driven (AKA Forced or inhomogeneous) PDE with standard boundary conditions.



8

where Sxx(x, t) =
“
h(t)−g(t)

L
x+ g(t)

”
xx

= 0. Thus, the PDE on u becomes,

∂w

∂t
= c2

∂2w

∂x2
− ∂S

∂t
,(96)

which implies that the PDE on u with time-dependent boundary conditions transforms to a PDE on w with the inhomogeneous term St.

5. Inhomogeneous Wave Equation on a closed and bounded spatial domain of R1+1

Consider the non-homogeneous one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
+ F (x, t) ,(97)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
.(98)

with boundary conditions and initial conditions,

u(0, t) = u(L, t) = 0,(99)

u(x, 0) = ut(x, 0) = 0.(100)

Letting F (x, t) = A sin(ωt) gives the following Fourier Series Representation of the forcing function F ,

(101) F (x, t) =

∞X
n=1

fn(t) sin
“nπx
L

”
,

where

(102) fn(t) =
2A

nπ
(1− (−1)n) sin(ωt).

5.1. Educated Fourier Series Guessing. Based on the boundary conditions we assume a Fourier sine series solution. However, the

time-dependence is unclear. So, assume that,

u(x, t) =

∞X
n=1

sin
“nπ
L
x
”
Gn(t),(103)

where Gn(t) represents the unknown dynamics of the n-th Fourier mode. Using this assumption and (101)-(102), show by direct substitution

that (97) yields the ODE,

(104) G̈n +
“cnπ
L

”2

Gn =
2A

nπ
(1− (−1)n) sin(ωt).

We have that,

utt − c2uxx − F (x, t) =

∞X
n=1

sin
“nπ
L
x
”
G̈n(t) +

“cnπ
L

”2
∞X
n=1

sin
“nπ
L
x
”
Gn(t)−

∞X
n=1

fn(t) sin
“nπx
L

”
(105)

=

∞X
n=1

»
G̈n(t) +

“cnπ
L

”2

Gn(t)− fn(t)

–
sin
“nπ
L
x
”

= 0.(106)

Since sin
“nπ
L
x
”
6= 0 for all x we require that,

G̈n(t) +
“cnπ
L

”2

Gn(t)− fn(t) = 0 ⇐⇒(107)

G̈n +
“cnπ
L

”2

Gn =
2A

nπ
(1− (−1)n) sin(ωt)(108)

5.2. Solving for the Dynamics. The solution to (104) is given by,

(109) Gn(t) = Ghn(t) +Gpn(t),

where Ghn(t) = Bn cos
“cnπ
L
t
”

+B∗n sin
“cnπ
L
t
”

is the homogeneous solution and Gpn(t) is the particular solution to (104).



9

5.2.1. Particular Solution - I. If ω 6= cnπ/L then what would the choice for Gpn(t) be, assuming you were solving for Gpn(t) using the method

of undetermined coefficients? do not solve for these coefficients

If the forcing function to (104) is given by fn(t) =
2A

nπ
(1 − (−1)n) sin(ωt) = αn sin(ωt) then we should choose the particular solution

Gn(t) = βn cos(ωt) + β∗n sin(ωt) for ω 6= cnπ/L. This would then give the general solution to the inhomogeneous PDE,

u(x, t) =

∞X
n=1

sin
“nπ
L
x
” h
Bn cos

“cnπ
L
t
”

+B∗n sin
“cnπ
L
t
”

+ βn cos(ωt) + β∗n sin(ωt)
i
,(110)

where βn and β∗n are undetermined coefficients found by standard ODE techniques.

5.2.2. Particular Solution - II. If ω = cnπ/L then what would the choice for Gpn(t) be, assuming you were solving for Gpn(t) using the

method of undetermined coefficients? do not solve for these coefficients

If the forcing function to (104) is given by fn(t) =
2A

nπ
(1 − (−1)n) sin(ωt) = αn sin(ωt) and ω = cnπ/L then we should choose the

particular solution Gn(t) = βnt cos(ωt) +β∗nt sin(ωt) for ω 6= cnπ/L. This would then give the general solution to the inhomogeneous PDE,

u(x, t) =

∞X
n=1

sin
“nπ
L
x
” h
Bn cos

“cnπ
L
t
”

+B∗n sin
“cnπ
L
t
”

+ βnt cos(ωt) + β∗nt sin(ωt)
i
,(111)

where βn and β∗n are undetermined coefficients found by standard ODE techniques.

5.2.3. Physical Conclusions. For the Particular Solution - II, what is lim
t→∞

u(x, t) and what does this limit imply physically?

There is a t-prefactor on this particular solution, which causes the amplitudes of oscillations to grow as a function of time. Formally, this

limit becomes unbounded as t→∞, which is the hallmark of resonance. The moral here is that systems that are prone to oscillate can be

made to resonate under the right external force. This is seen in ODE’s via mass-spring systems but is just as true for any ideal oscillatory

systems.
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