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Quote of Lecture 0

Professor Hubert Farnsworth: Good news, everyone. You’ll be making a delivery to

the planet Trisol. A mysterious planet located in the mysterious depths of the Forbidden

Zone.

Leela: Professor, are we even allowed in the Forbidden Zone?

Professor Hubert Farnsworth: Why of course. It’s just a name, like the Death Zone,

or the Zone of No Return. All the zones have names like that in the Galaxy of Terror.

Futurama: My Three Suns (1999)

The course Advanced Engineering Mathematics serves the following CSM disciplines,

• Engineering (Civil, Electrical, Environmental, Mechanical)

• Geophysics

• Rouge Physicists

• Students pursuing an ASI or minor in Mathematics

by introducing them to concepts from,

• Linear Algebra

• Partial Differential Equations

in order to connect their two-years of post secondary mathematics to the rich field of applied mathematical

modeling.

If mathematics is the study of the meaning and properties associated with the symbolic formalism then

applied mathematical modeling is the application of this knowledge to real-world phenomenon in an effort

to draw non-experimental conclusions. The ultimate goal is to make predictions about natural occurrences

in order to gain control over them.1 Since this has been going on for most of human existence the body of

material is massive and deep. We will be mostly concerned with calculation, but if we remember to also

concern ourselves with the mathematical roots we will achieve a more comprehensive and thus connected

understanding enabling us to remember more concepts for a longer period of time.

It is my perspective that the key point of this material is to draw as many conclusions about the symbols,

which naturally arise as solutions to certain differential equations, as possible. This is by no means a small

task and there are many different and equally justifiable routes to this goal. However, this goal, I feel, is

best served by studying first the straight-forward concepts of linear algebra and connect these concepts to

the more complicated study of linear partial differential equations used to model ideal, flows, vibrations, and

potential fields. 2 3

1For example, it is sometimes difficult to construct experiments involving complicated fluid flow but it is ‘easier’

to write down mathematical models for these flows and evaluate them under ‘experimental conditions’. A reason for

this might be to understand how to mix two fluids into one fluid while using the least amount of energy.
2I must note that it is highly useful to study the theory of linear algebra as it is the most applicable mathematical

tool in the sciences and well worth a stand alone course. Those interested should consider taking MATH332-Linear

Algebra.
3The concept of linearity is a powerful tool that allows one to say that an object with a certain property is equivalent

to the sum of of other objects having the same property. This is not generally true of nonlinear phenomenon.
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My opinion is largely due to the fact that linear algebra can abstract a method, which you should already

be aware of, to any finite number of directions. That is, for certain two-dimensional linear problems say,

dY
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#
, (1)

one can construct solutions via linear combinations in some eigenbasis of the constant coefficient matrix.

Specifically, solutions takes the form,

Y(t) = k1v1e
λ1t + k2v2e

λ2t, (2)

for appropriate choices of k1, k2, λ1, λ2,v1,v2. 4 This concept is deep and difficult to pick out when one

is constructing solutions in infinite-dimensional spaces. 5 So, we start with the a study of linear algebra,

building on your previous work with differential equations and vector calculus, so that when we finish with

a survey of PDE’s the mathematics will have a better ‘sense’.

For example, we will find out later on that for solutions to the linear PDE,

∂u

∂t
= c24u, (3)

whose unknown function u has spatial component defined on a closed and bounded domain in R, can take

the following form,

u(x, t) =

∞X
n=−∞

kne
−iωnxe−(cωn)2t, (4)

for appropriate choice of ki, wi, i ∈ N. It is not obvious what this summation means and how it could

possibly be related to the study of the PDE, which models the flow of some density. It may or may not be

obvious that this is a linear combination of basis vectors, or that since we used infinitely many basis vectors

the summability of the series should be in question.6 However, if we start small and go big, we will have the

experience needed to be comfortable with statements like (4) and be able to concentrate on understanding

what they can tell us about (3). In the past I have not delivered the material in this way.

Traditionally, my course starts with the topic of Fourier series and builds to PDE’s. After this was

completed the course would end with the reprieve of linear algebra. It is understandable why everyone

found this timeline so amenable. However, this tends to make the hardest calculations encountered in

the study of PDE’s shadowy and thus difficult to understand and replicate. Breaking with these previous

timelines I offer, a hopefully beneficial, ordering outlined below. I ask each student to read this along with

your texts table of contents in order to note what I feel are key concepts and where/when we expect them

to come up.

4You may recall that these values are determined by the initial conditions, eigenvalues and eigenvectors, respec-

tively.
5In the previous problem the solution space has a two-dimensional basis and thus all solutions to the problem can

be written using linear combinations of these two eigenvectors. This is analygous to the concept that any vector in

the plane can be written as the linear combination of î and ĵ.
6We won’t question it here and for many the theory is not needed for the fearless calculations. However, we should

at least make a mental note that we will be on slippery slope. One can show that there is a convergent trigonometric

series that is not the Fourier series of any integrable function and at some point we will construct a series used to

represent a function, which is allowed be called equivalent even though we permit it to differ from the function at a

countably-infinite amount of points, bringing into question what we actually mean by integral.
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MATH348 - Fall2008 - Tentative Schedule

Lecture(s) Section Pages Key Concepts

1 7.1,7.2 272-286 Algebra, Associativity, Commutativity, Distri-

bution, Inner-Product, Outer-Product, Matrix

Product, Symmetric, Skew-Symmetric

2-4 7.3,7.5 287-295,

302-305

Linear System, Existence and Uniqueness, Gauss

Elimination, Row Echelon Form, Fundamental

Theorem for Linear Systems, Homogeneous and

Nonhomogeneous systems.

6-7 7.7-7.8 308-314 Determinant, Cramer’s Theorem, Matrix Inverse,

Orthogonal Matrix

8-10 7.4, 7.9 296-301,

323-329

Linear Dependence, Basis, Dimension, Rank,

Span, Row Space, Column Space, Null Space,

Vector Space, Inner Product Space

11 8.1 334-339 Eigenvalue, Spectra, Eigenvector, Eigenfunction

12 8.3 345-348 Symmetric, Skew-Symmetric, Orthogonal, Trans-

formations, Spectra

13-14 8.4 349-355 Eigenbasis, Diagonalization, Quadratic Form,

Definiteness

15-16 Review of Func-

tions

N/A Function, Even, Odd, Periodic Function, Trigono-

metric Function, Factorial Function, Gamma

Function, Bessel Function of the First Kind

17-18 11.1, 11.3 478-486,

490-495

Fourier Series, Fourier Coefficents, Fourier Series

of Functions with Symmetry

18 11.2 487-489 Domain Scaling Properties

19 11.4 496-498 Euler’s Formula, Complex Fourier Series

20 11.6 502-505 Trigonometric Approximation

21 11.7-11.8 506-517 Fourier Integral, Fourier Sine/Cosine Transform

22-25 11.9 518-528 Fourier Transform, time/space domain, frequency

domain, spectral representation, convolution,

Green’s function, Frequency Response

26 Review of DE,

12.1

535-537 Differential Equation, Vocabulary, Linear ODE’s,

Boundary Value Problems, Simple Harmonic Os-

cillators, Bessel’s Equation

27-28 Flows and Con-

servations Laws

N/A Divergence Theorem, Conservation Equation,

Constitutive Equation, Fourier’s Law of Heat

Conduction

29 12.5 552-561 Boundary Conditions, Separation of Variables,

Periodic Extension

30 Inhomogeneity N/A Extension of Fourier Methods

31 12.2-12.4 538-551 Ideal Wave Equation, Vibrations, D’Alebert’s So-

lution

32 12.6 562-568 Cauchy-Problem, Heat Kernel

33 12.9 579-586 Multivariate Chain Rule, Laplacian in Polar Co-

ordinates, Fourier-Bessel Series

34 12.10 587-593 Cylindrical and Spherical Geometries

35 12.11 594-596 Laplace Transforms and PDE’s

36 Acoustics N/A Linear Approximations and Small Amplitude Vi-

brations


